ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminrpcl Unicode version

Theorem xrminrpcl 11075
Description: The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
xrminrpcl  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )

Proof of Theorem xrminrpcl
StepHypRef Expression
1 rpxr 9478 . . . 4  |-  ( A  e.  RR+  ->  A  e. 
RR* )
2 rpxr 9478 . . . 4  |-  ( B  e.  RR+  ->  B  e. 
RR* )
3 xrminmax 11066 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
41, 2, 3syl2an 287 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
5 rpre 9477 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  RR )
6 rexneg 9643 . . . . . . . . 9  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
7 renegcl 8047 . . . . . . . . 9  |-  ( A  e.  RR  ->  -u A  e.  RR )
86, 7eqeltrd 2217 . . . . . . . 8  |-  ( A  e.  RR  ->  -e
A  e.  RR )
95, 8syl 14 . . . . . . 7  |-  ( A  e.  RR+  ->  -e
A  e.  RR )
10 rpre 9477 . . . . . . . 8  |-  ( B  e.  RR+  ->  B  e.  RR )
11 rexneg 9643 . . . . . . . . 9  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
12 renegcl 8047 . . . . . . . . 9  |-  ( B  e.  RR  ->  -u B  e.  RR )
1311, 12eqeltrd 2217 . . . . . . . 8  |-  ( B  e.  RR  ->  -e
B  e.  RR )
1410, 13syl 14 . . . . . . 7  |-  ( B  e.  RR+  ->  -e
B  e.  RR )
15 xrmaxrecl 11056 . . . . . . 7  |-  ( ( 
-e A  e.  RR  /\  -e
B  e.  RR )  ->  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR ,  <  ) )
169, 14, 15syl2an 287 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  =  sup ( { 
-e A ,  -e B } ,  RR ,  <  ) )
17 maxcl 11014 . . . . . . 7  |-  ( ( 
-e A  e.  RR  /\  -e
B  e.  RR )  ->  sup ( {  -e
A ,  -e
B } ,  RR ,  <  )  e.  RR )
189, 14, 17syl2an 287 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR ,  <  )  e.  RR )
1916, 18eqeltrd 2217 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR )
20 rexneg 9643 . . . . 5  |-  ( sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR  -> 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  = 
-u sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
2119, 20syl 14 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  -u sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
2219renegcld 8166 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -u sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR )
2321, 22eqeltrd 2217 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR )
244, 23eqeltrd 2217 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR )
25 rpgt0 9482 . . . 4  |-  ( A  e.  RR+  ->  0  < 
A )
26 rpgt0 9482 . . . 4  |-  ( B  e.  RR+  ->  0  < 
B )
2725, 26anim12i 336 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
0  <  A  /\  0  <  B ) )
28 0xr 7836 . . . 4  |-  0  e.  RR*
29 xrltmininf 11071 . . . 4  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  B  e. 
RR* )  ->  (
0  < inf ( { A ,  B } ,  RR* ,  <  )  <->  ( 0  <  A  /\  0  <  B ) ) )
3028, 1, 2, 29mp3an3an 1322 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
0  < inf ( { A ,  B } ,  RR* ,  <  )  <->  ( 0  <  A  /\  0  <  B ) ) )
3127, 30mpbird 166 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  0  < inf ( { A ,  B } ,  RR* ,  <  ) )
3224, 31elrpd 9510 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {cpr 3533   class class class wbr 3937   supcsup 6877  infcinf 6878   RRcr 7643   0cc0 7644   RR*cxr 7823    < clt 7824   -ucneg 7958   RR+crp 9470    -ecxne 9586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-xneg 9589  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  blin2  12640  xmettx  12718
  Copyright terms: Public domain W3C validator