ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminrpcl Unicode version

Theorem xrminrpcl 11780
Description: The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
xrminrpcl  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )

Proof of Theorem xrminrpcl
StepHypRef Expression
1 rpxr 9853 . . . 4  |-  ( A  e.  RR+  ->  A  e. 
RR* )
2 rpxr 9853 . . . 4  |-  ( B  e.  RR+  ->  B  e. 
RR* )
3 xrminmax 11771 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
5 rpre 9852 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  RR )
6 rexneg 10022 . . . . . . . . 9  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
7 renegcl 8403 . . . . . . . . 9  |-  ( A  e.  RR  ->  -u A  e.  RR )
86, 7eqeltrd 2306 . . . . . . . 8  |-  ( A  e.  RR  ->  -e
A  e.  RR )
95, 8syl 14 . . . . . . 7  |-  ( A  e.  RR+  ->  -e
A  e.  RR )
10 rpre 9852 . . . . . . . 8  |-  ( B  e.  RR+  ->  B  e.  RR )
11 rexneg 10022 . . . . . . . . 9  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
12 renegcl 8403 . . . . . . . . 9  |-  ( B  e.  RR  ->  -u B  e.  RR )
1311, 12eqeltrd 2306 . . . . . . . 8  |-  ( B  e.  RR  ->  -e
B  e.  RR )
1410, 13syl 14 . . . . . . 7  |-  ( B  e.  RR+  ->  -e
B  e.  RR )
15 xrmaxrecl 11761 . . . . . . 7  |-  ( ( 
-e A  e.  RR  /\  -e
B  e.  RR )  ->  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR ,  <  ) )
169, 14, 15syl2an 289 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  =  sup ( { 
-e A ,  -e B } ,  RR ,  <  ) )
17 maxcl 11716 . . . . . . 7  |-  ( ( 
-e A  e.  RR  /\  -e
B  e.  RR )  ->  sup ( {  -e
A ,  -e
B } ,  RR ,  <  )  e.  RR )
189, 14, 17syl2an 289 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR ,  <  )  e.  RR )
1916, 18eqeltrd 2306 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR )
20 rexneg 10022 . . . . 5  |-  ( sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR  -> 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  = 
-u sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
2119, 20syl 14 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  -u sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
2219renegcld 8522 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -u sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR )
2321, 22eqeltrd 2306 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR )
244, 23eqeltrd 2306 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR )
25 rpgt0 9857 . . . 4  |-  ( A  e.  RR+  ->  0  < 
A )
26 rpgt0 9857 . . . 4  |-  ( B  e.  RR+  ->  0  < 
B )
2725, 26anim12i 338 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
0  <  A  /\  0  <  B ) )
28 0xr 8189 . . . 4  |-  0  e.  RR*
29 xrltmininf 11776 . . . 4  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  B  e. 
RR* )  ->  (
0  < inf ( { A ,  B } ,  RR* ,  <  )  <->  ( 0  <  A  /\  0  <  B ) ) )
3028, 1, 2, 29mp3an3an 1377 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
0  < inf ( { A ,  B } ,  RR* ,  <  )  <->  ( 0  <  A  /\  0  <  B ) ) )
3127, 30mpbird 167 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  0  < inf ( { A ,  B } ,  RR* ,  <  ) )
3224, 31elrpd 9885 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cpr 3667   class class class wbr 4082   supcsup 7145  infcinf 7146   RRcr 7994   0cc0 7995   RR*cxr 8176    < clt 8177   -ucneg 8314   RR+crp 9845    -ecxne 9961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-xneg 9964  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505
This theorem is referenced by:  blin2  15100  xmettx  15178
  Copyright terms: Public domain W3C validator