ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminrpcl Unicode version

Theorem xrminrpcl 11237
Description: The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
xrminrpcl  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )

Proof of Theorem xrminrpcl
StepHypRef Expression
1 rpxr 9618 . . . 4  |-  ( A  e.  RR+  ->  A  e. 
RR* )
2 rpxr 9618 . . . 4  |-  ( B  e.  RR+  ->  B  e. 
RR* )
3 xrminmax 11228 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
41, 2, 3syl2an 287 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
5 rpre 9617 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  RR )
6 rexneg 9787 . . . . . . . . 9  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
7 renegcl 8180 . . . . . . . . 9  |-  ( A  e.  RR  ->  -u A  e.  RR )
86, 7eqeltrd 2247 . . . . . . . 8  |-  ( A  e.  RR  ->  -e
A  e.  RR )
95, 8syl 14 . . . . . . 7  |-  ( A  e.  RR+  ->  -e
A  e.  RR )
10 rpre 9617 . . . . . . . 8  |-  ( B  e.  RR+  ->  B  e.  RR )
11 rexneg 9787 . . . . . . . . 9  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
12 renegcl 8180 . . . . . . . . 9  |-  ( B  e.  RR  ->  -u B  e.  RR )
1311, 12eqeltrd 2247 . . . . . . . 8  |-  ( B  e.  RR  ->  -e
B  e.  RR )
1410, 13syl 14 . . . . . . 7  |-  ( B  e.  RR+  ->  -e
B  e.  RR )
15 xrmaxrecl 11218 . . . . . . 7  |-  ( ( 
-e A  e.  RR  /\  -e
B  e.  RR )  ->  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR ,  <  ) )
169, 14, 15syl2an 287 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  =  sup ( { 
-e A ,  -e B } ,  RR ,  <  ) )
17 maxcl 11174 . . . . . . 7  |-  ( ( 
-e A  e.  RR  /\  -e
B  e.  RR )  ->  sup ( {  -e
A ,  -e
B } ,  RR ,  <  )  e.  RR )
189, 14, 17syl2an 287 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR ,  <  )  e.  RR )
1916, 18eqeltrd 2247 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR )
20 rexneg 9787 . . . . 5  |-  ( sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR  -> 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  = 
-u sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
2119, 20syl 14 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  -u sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
2219renegcld 8299 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -u sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR )
2321, 22eqeltrd 2247 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR )
244, 23eqeltrd 2247 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR )
25 rpgt0 9622 . . . 4  |-  ( A  e.  RR+  ->  0  < 
A )
26 rpgt0 9622 . . . 4  |-  ( B  e.  RR+  ->  0  < 
B )
2725, 26anim12i 336 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
0  <  A  /\  0  <  B ) )
28 0xr 7966 . . . 4  |-  0  e.  RR*
29 xrltmininf 11233 . . . 4  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  B  e. 
RR* )  ->  (
0  < inf ( { A ,  B } ,  RR* ,  <  )  <->  ( 0  <  A  /\  0  <  B ) ) )
3028, 1, 2, 29mp3an3an 1338 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
0  < inf ( { A ,  B } ,  RR* ,  <  )  <->  ( 0  <  A  /\  0  <  B ) ) )
3127, 30mpbird 166 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  0  < inf ( { A ,  B } ,  RR* ,  <  ) )
3224, 31elrpd 9650 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cpr 3584   class class class wbr 3989   supcsup 6959  infcinf 6960   RRcr 7773   0cc0 7774   RR*cxr 7953    < clt 7954   -ucneg 8091   RR+crp 9610    -ecxne 9726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-xneg 9729  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  blin2  13226  xmettx  13304
  Copyright terms: Public domain W3C validator