ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminrpcl Unicode version

Theorem xrminrpcl 11585
Description: The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
xrminrpcl  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )

Proof of Theorem xrminrpcl
StepHypRef Expression
1 rpxr 9783 . . . 4  |-  ( A  e.  RR+  ->  A  e. 
RR* )
2 rpxr 9783 . . . 4  |-  ( B  e.  RR+  ->  B  e. 
RR* )
3 xrminmax 11576 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
5 rpre 9782 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  RR )
6 rexneg 9952 . . . . . . . . 9  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
7 renegcl 8333 . . . . . . . . 9  |-  ( A  e.  RR  ->  -u A  e.  RR )
86, 7eqeltrd 2282 . . . . . . . 8  |-  ( A  e.  RR  ->  -e
A  e.  RR )
95, 8syl 14 . . . . . . 7  |-  ( A  e.  RR+  ->  -e
A  e.  RR )
10 rpre 9782 . . . . . . . 8  |-  ( B  e.  RR+  ->  B  e.  RR )
11 rexneg 9952 . . . . . . . . 9  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
12 renegcl 8333 . . . . . . . . 9  |-  ( B  e.  RR  ->  -u B  e.  RR )
1311, 12eqeltrd 2282 . . . . . . . 8  |-  ( B  e.  RR  ->  -e
B  e.  RR )
1410, 13syl 14 . . . . . . 7  |-  ( B  e.  RR+  ->  -e
B  e.  RR )
15 xrmaxrecl 11566 . . . . . . 7  |-  ( ( 
-e A  e.  RR  /\  -e
B  e.  RR )  ->  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR ,  <  ) )
169, 14, 15syl2an 289 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  =  sup ( { 
-e A ,  -e B } ,  RR ,  <  ) )
17 maxcl 11521 . . . . . . 7  |-  ( ( 
-e A  e.  RR  /\  -e
B  e.  RR )  ->  sup ( {  -e
A ,  -e
B } ,  RR ,  <  )  e.  RR )
189, 14, 17syl2an 289 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR ,  <  )  e.  RR )
1916, 18eqeltrd 2282 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR )
20 rexneg 9952 . . . . 5  |-  ( sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR  -> 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  = 
-u sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
2119, 20syl 14 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  -u sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
2219renegcld 8452 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -u sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR )
2321, 22eqeltrd 2282 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR )
244, 23eqeltrd 2282 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR )
25 rpgt0 9787 . . . 4  |-  ( A  e.  RR+  ->  0  < 
A )
26 rpgt0 9787 . . . 4  |-  ( B  e.  RR+  ->  0  < 
B )
2725, 26anim12i 338 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
0  <  A  /\  0  <  B ) )
28 0xr 8119 . . . 4  |-  0  e.  RR*
29 xrltmininf 11581 . . . 4  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  B  e. 
RR* )  ->  (
0  < inf ( { A ,  B } ,  RR* ,  <  )  <->  ( 0  <  A  /\  0  <  B ) ) )
3028, 1, 2, 29mp3an3an 1356 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
0  < inf ( { A ,  B } ,  RR* ,  <  )  <->  ( 0  <  A  /\  0  <  B ) ) )
3127, 30mpbird 167 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  0  < inf ( { A ,  B } ,  RR* ,  <  ) )
3224, 31elrpd 9815 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {cpr 3634   class class class wbr 4044   supcsup 7084  infcinf 7085   RRcr 7924   0cc0 7925   RR*cxr 8106    < clt 8107   -ucneg 8244   RR+crp 9775    -ecxne 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-xneg 9894  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by:  blin2  14904  xmettx  14982
  Copyright terms: Public domain W3C validator