ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssclg Unicode version

Theorem lssclg 13456
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lsscl.f  |-  F  =  (Scalar `  W )
lsscl.b  |-  B  =  ( Base `  F
)
lsscl.p  |-  .+  =  ( +g  `  W )
lsscl.t  |-  .x.  =  ( .s `  W )
lsscl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssclg  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  (
( Z  .x.  X
)  .+  Y )  e.  U )

Proof of Theorem lssclg
Dummy variables  x  a  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 998 . . . 4  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  U  e.  S )
2 lsscl.f . . . . . 6  |-  F  =  (Scalar `  W )
3 lsscl.b . . . . . 6  |-  B  =  ( Base `  F
)
4 eqid 2177 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
5 lsscl.p . . . . . 6  |-  .+  =  ( +g  `  W )
6 lsscl.t . . . . . 6  |-  .x.  =  ( .s `  W )
7 lsscl.s . . . . . 6  |-  S  =  ( LSubSp `  W )
82, 3, 4, 5, 6, 7islssm 13450 . . . . 5  |-  ( W  e.  C  ->  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
983ad2ant1 1018 . . . 4  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
101, 9mpbid 147 . . 3  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) )
1110simp3d 1011 . 2  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)
12 oveq1 5884 . . . . . 6  |-  ( x  =  Z  ->  (
x  .x.  a )  =  ( Z  .x.  a ) )
1312oveq1d 5892 . . . . 5  |-  ( x  =  Z  ->  (
( x  .x.  a
)  .+  b )  =  ( ( Z 
.x.  a )  .+  b ) )
1413eleq1d 2246 . . . 4  |-  ( x  =  Z  ->  (
( ( x  .x.  a )  .+  b
)  e.  U  <->  ( ( Z  .x.  a )  .+  b )  e.  U
) )
15 oveq2 5885 . . . . . 6  |-  ( a  =  X  ->  ( Z  .x.  a )  =  ( Z  .x.  X
) )
1615oveq1d 5892 . . . . 5  |-  ( a  =  X  ->  (
( Z  .x.  a
)  .+  b )  =  ( ( Z 
.x.  X )  .+  b ) )
1716eleq1d 2246 . . . 4  |-  ( a  =  X  ->  (
( ( Z  .x.  a )  .+  b
)  e.  U  <->  ( ( Z  .x.  X )  .+  b )  e.  U
) )
18 oveq2 5885 . . . . 5  |-  ( b  =  Y  ->  (
( Z  .x.  X
)  .+  b )  =  ( ( Z 
.x.  X )  .+  Y ) )
1918eleq1d 2246 . . . 4  |-  ( b  =  Y  ->  (
( ( Z  .x.  X )  .+  b
)  e.  U  <->  ( ( Z  .x.  X )  .+  Y )  e.  U
) )
2014, 17, 19rspc3v 2859 . . 3  |-  ( ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U )  ->  ( A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U  ->  ( ( Z  .x.  X )  .+  Y
)  e.  U ) )
21203ad2ant3 1020 . 2  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U  -> 
( ( Z  .x.  X )  .+  Y
)  e.  U ) )
2211, 21mpd 13 1  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  (
( Z  .x.  X
)  .+  Y )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455    C_ wss 3131   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538  Scalarcsca 12541   .scvsca 12542   LSubSpclss 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-lssm 13448
This theorem is referenced by:  lssvacl  13457  lssvsubcl  13458  lssvscl  13467  islss3  13471  lssintclm  13476
  Copyright terms: Public domain W3C validator