| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lssclg | Unicode version | ||
| Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| lsscl.f | 
 | 
| lsscl.b | 
 | 
| lsscl.p | 
 | 
| lsscl.t | 
 | 
| lsscl.s | 
 | 
| Ref | Expression | 
|---|---|
| lssclg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp2 1000 | 
. . . 4
 | |
| 2 | lsscl.f | 
. . . . . 6
 | |
| 3 | lsscl.b | 
. . . . . 6
 | |
| 4 | eqid 2196 | 
. . . . . 6
 | |
| 5 | lsscl.p | 
. . . . . 6
 | |
| 6 | lsscl.t | 
. . . . . 6
 | |
| 7 | lsscl.s | 
. . . . . 6
 | |
| 8 | 2, 3, 4, 5, 6, 7 | islssmg 13914 | 
. . . . 5
 | 
| 9 | 8 | 3ad2ant1 1020 | 
. . . 4
 | 
| 10 | 1, 9 | mpbid 147 | 
. . 3
 | 
| 11 | 10 | simp3d 1013 | 
. 2
 | 
| 12 | oveq1 5929 | 
. . . . . 6
 | |
| 13 | 12 | oveq1d 5937 | 
. . . . 5
 | 
| 14 | 13 | eleq1d 2265 | 
. . . 4
 | 
| 15 | oveq2 5930 | 
. . . . . 6
 | |
| 16 | 15 | oveq1d 5937 | 
. . . . 5
 | 
| 17 | 16 | eleq1d 2265 | 
. . . 4
 | 
| 18 | oveq2 5930 | 
. . . . 5
 | |
| 19 | 18 | eleq1d 2265 | 
. . . 4
 | 
| 20 | 14, 17, 19 | rspc3v 2884 | 
. . 3
 | 
| 21 | 20 | 3ad2ant3 1022 | 
. 2
 | 
| 22 | 11, 21 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-lssm 13909 | 
| This theorem is referenced by: lssvacl 13921 lssvsubcl 13922 lssvscl 13931 islss3 13935 lssintclm 13940 | 
| Copyright terms: Public domain | W3C validator |