ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssclg Unicode version

Theorem lssclg 14241
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lsscl.f  |-  F  =  (Scalar `  W )
lsscl.b  |-  B  =  ( Base `  F
)
lsscl.p  |-  .+  =  ( +g  `  W )
lsscl.t  |-  .x.  =  ( .s `  W )
lsscl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssclg  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  (
( Z  .x.  X
)  .+  Y )  e.  U )

Proof of Theorem lssclg
Dummy variables  x  a  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1001 . . . 4  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  U  e.  S )
2 lsscl.f . . . . . 6  |-  F  =  (Scalar `  W )
3 lsscl.b . . . . . 6  |-  B  =  ( Base `  F
)
4 eqid 2207 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
5 lsscl.p . . . . . 6  |-  .+  =  ( +g  `  W )
6 lsscl.t . . . . . 6  |-  .x.  =  ( .s `  W )
7 lsscl.s . . . . . 6  |-  S  =  ( LSubSp `  W )
82, 3, 4, 5, 6, 7islssmg 14235 . . . . 5  |-  ( W  e.  C  ->  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
983ad2ant1 1021 . . . 4  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
101, 9mpbid 147 . . 3  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) )
1110simp3d 1014 . 2  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)
12 oveq1 5974 . . . . . 6  |-  ( x  =  Z  ->  (
x  .x.  a )  =  ( Z  .x.  a ) )
1312oveq1d 5982 . . . . 5  |-  ( x  =  Z  ->  (
( x  .x.  a
)  .+  b )  =  ( ( Z 
.x.  a )  .+  b ) )
1413eleq1d 2276 . . . 4  |-  ( x  =  Z  ->  (
( ( x  .x.  a )  .+  b
)  e.  U  <->  ( ( Z  .x.  a )  .+  b )  e.  U
) )
15 oveq2 5975 . . . . . 6  |-  ( a  =  X  ->  ( Z  .x.  a )  =  ( Z  .x.  X
) )
1615oveq1d 5982 . . . . 5  |-  ( a  =  X  ->  (
( Z  .x.  a
)  .+  b )  =  ( ( Z 
.x.  X )  .+  b ) )
1716eleq1d 2276 . . . 4  |-  ( a  =  X  ->  (
( ( Z  .x.  a )  .+  b
)  e.  U  <->  ( ( Z  .x.  X )  .+  b )  e.  U
) )
18 oveq2 5975 . . . . 5  |-  ( b  =  Y  ->  (
( Z  .x.  X
)  .+  b )  =  ( ( Z 
.x.  X )  .+  Y ) )
1918eleq1d 2276 . . . 4  |-  ( b  =  Y  ->  (
( ( Z  .x.  X )  .+  b
)  e.  U  <->  ( ( Z  .x.  X )  .+  Y )  e.  U
) )
2014, 17, 19rspc3v 2900 . . 3  |-  ( ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U )  ->  ( A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U  ->  ( ( Z  .x.  X )  .+  Y
)  e.  U ) )
21203ad2ant3 1023 . 2  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U  -> 
( ( Z  .x.  X )  .+  Y
)  e.  U ) )
2211, 21mpd 13 1  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  (
( Z  .x.  X
)  .+  Y )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486    C_ wss 3174   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  Scalarcsca 13027   .scvsca 13028   LSubSpclss 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-lssm 14230
This theorem is referenced by:  lssvacl  14242  lssvsubcl  14243  lssvscl  14252  islss3  14256  lssintclm  14261
  Copyright terms: Public domain W3C validator