ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssclg Unicode version

Theorem lssclg 13553
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lsscl.f  |-  F  =  (Scalar `  W )
lsscl.b  |-  B  =  ( Base `  F
)
lsscl.p  |-  .+  =  ( +g  `  W )
lsscl.t  |-  .x.  =  ( .s `  W )
lsscl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssclg  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  (
( Z  .x.  X
)  .+  Y )  e.  U )

Proof of Theorem lssclg
Dummy variables  x  a  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 999 . . . 4  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  U  e.  S )
2 lsscl.f . . . . . 6  |-  F  =  (Scalar `  W )
3 lsscl.b . . . . . 6  |-  B  =  ( Base `  F
)
4 eqid 2187 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
5 lsscl.p . . . . . 6  |-  .+  =  ( +g  `  W )
6 lsscl.t . . . . . 6  |-  .x.  =  ( .s `  W )
7 lsscl.s . . . . . 6  |-  S  =  ( LSubSp `  W )
82, 3, 4, 5, 6, 7islssmg 13547 . . . . 5  |-  ( W  e.  C  ->  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
983ad2ant1 1019 . . . 4  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
101, 9mpbid 147 . . 3  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) )
1110simp3d 1012 . 2  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)
12 oveq1 5895 . . . . . 6  |-  ( x  =  Z  ->  (
x  .x.  a )  =  ( Z  .x.  a ) )
1312oveq1d 5903 . . . . 5  |-  ( x  =  Z  ->  (
( x  .x.  a
)  .+  b )  =  ( ( Z 
.x.  a )  .+  b ) )
1413eleq1d 2256 . . . 4  |-  ( x  =  Z  ->  (
( ( x  .x.  a )  .+  b
)  e.  U  <->  ( ( Z  .x.  a )  .+  b )  e.  U
) )
15 oveq2 5896 . . . . . 6  |-  ( a  =  X  ->  ( Z  .x.  a )  =  ( Z  .x.  X
) )
1615oveq1d 5903 . . . . 5  |-  ( a  =  X  ->  (
( Z  .x.  a
)  .+  b )  =  ( ( Z 
.x.  X )  .+  b ) )
1716eleq1d 2256 . . . 4  |-  ( a  =  X  ->  (
( ( Z  .x.  a )  .+  b
)  e.  U  <->  ( ( Z  .x.  X )  .+  b )  e.  U
) )
18 oveq2 5896 . . . . 5  |-  ( b  =  Y  ->  (
( Z  .x.  X
)  .+  b )  =  ( ( Z 
.x.  X )  .+  Y ) )
1918eleq1d 2256 . . . 4  |-  ( b  =  Y  ->  (
( ( Z  .x.  X )  .+  b
)  e.  U  <->  ( ( Z  .x.  X )  .+  Y )  e.  U
) )
2014, 17, 19rspc3v 2869 . . 3  |-  ( ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U )  ->  ( A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U  ->  ( ( Z  .x.  X )  .+  Y
)  e.  U ) )
21203ad2ant3 1021 . 2  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U  -> 
( ( Z  .x.  X )  .+  Y
)  e.  U ) )
2211, 21mpd 13 1  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  (
( Z  .x.  X
)  .+  Y )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 979    = wceq 1363   E.wex 1502    e. wcel 2158   A.wral 2465    C_ wss 3141   ` cfv 5228  (class class class)co 5888   Basecbs 12476   +g cplusg 12551  Scalarcsca 12554   .scvsca 12555   LSubSpclss 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-ov 5891  df-inn 8934  df-ndx 12479  df-slot 12480  df-base 12482  df-lssm 13542
This theorem is referenced by:  lssvacl  13554  lssvsubcl  13555  lssvscl  13564  islss3  13568  lssintclm  13573
  Copyright terms: Public domain W3C validator