ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssclg Unicode version

Theorem lssclg 14126
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lsscl.f  |-  F  =  (Scalar `  W )
lsscl.b  |-  B  =  ( Base `  F
)
lsscl.p  |-  .+  =  ( +g  `  W )
lsscl.t  |-  .x.  =  ( .s `  W )
lsscl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssclg  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  (
( Z  .x.  X
)  .+  Y )  e.  U )

Proof of Theorem lssclg
Dummy variables  x  a  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1001 . . . 4  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  U  e.  S )
2 lsscl.f . . . . . 6  |-  F  =  (Scalar `  W )
3 lsscl.b . . . . . 6  |-  B  =  ( Base `  F
)
4 eqid 2205 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
5 lsscl.p . . . . . 6  |-  .+  =  ( +g  `  W )
6 lsscl.t . . . . . 6  |-  .x.  =  ( .s `  W )
7 lsscl.s . . . . . 6  |-  S  =  ( LSubSp `  W )
82, 3, 4, 5, 6, 7islssmg 14120 . . . . 5  |-  ( W  e.  C  ->  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
983ad2ant1 1021 . . . 4  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) ) )
101, 9mpbid 147 . . 3  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
( x  .x.  a
)  .+  b )  e.  U ) )
1110simp3d 1014 . 2  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)
12 oveq1 5951 . . . . . 6  |-  ( x  =  Z  ->  (
x  .x.  a )  =  ( Z  .x.  a ) )
1312oveq1d 5959 . . . . 5  |-  ( x  =  Z  ->  (
( x  .x.  a
)  .+  b )  =  ( ( Z 
.x.  a )  .+  b ) )
1413eleq1d 2274 . . . 4  |-  ( x  =  Z  ->  (
( ( x  .x.  a )  .+  b
)  e.  U  <->  ( ( Z  .x.  a )  .+  b )  e.  U
) )
15 oveq2 5952 . . . . . 6  |-  ( a  =  X  ->  ( Z  .x.  a )  =  ( Z  .x.  X
) )
1615oveq1d 5959 . . . . 5  |-  ( a  =  X  ->  (
( Z  .x.  a
)  .+  b )  =  ( ( Z 
.x.  X )  .+  b ) )
1716eleq1d 2274 . . . 4  |-  ( a  =  X  ->  (
( ( Z  .x.  a )  .+  b
)  e.  U  <->  ( ( Z  .x.  X )  .+  b )  e.  U
) )
18 oveq2 5952 . . . . 5  |-  ( b  =  Y  ->  (
( Z  .x.  X
)  .+  b )  =  ( ( Z 
.x.  X )  .+  Y ) )
1918eleq1d 2274 . . . 4  |-  ( b  =  Y  ->  (
( ( Z  .x.  X )  .+  b
)  e.  U  <->  ( ( Z  .x.  X )  .+  Y )  e.  U
) )
2014, 17, 19rspc3v 2893 . . 3  |-  ( ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U )  ->  ( A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U  ->  ( ( Z  .x.  X )  .+  Y
)  e.  U ) )
21203ad2ant3 1023 . 2  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  ( A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U  -> 
( ( Z  .x.  X )  .+  Y
)  e.  U ) )
2211, 21mpd 13 1  |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  (
( Z  .x.  X
)  .+  Y )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484    C_ wss 3166   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  Scalarcsca 12912   .scvsca 12913   LSubSpclss 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-lssm 14115
This theorem is referenced by:  lssvacl  14127  lssvsubcl  14128  lssvscl  14137  islss3  14141  lssintclm  14146
  Copyright terms: Public domain W3C validator