ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s111 Unicode version

Theorem s111 11159
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s111  |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( <" S ">  =  <" T ">  <->  S  =  T
) )

Proof of Theorem s111
StepHypRef Expression
1 s1val 11145 . . 3  |-  ( S  e.  A  ->  <" S ">  =  { <. 0 ,  S >. } )
2 s1val 11145 . . 3  |-  ( T  e.  A  ->  <" T ">  =  { <. 0 ,  T >. } )
31, 2eqeqan12d 2245 . 2  |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( <" S ">  =  <" T ">  <->  { <. 0 ,  S >. }  =  { <. 0 ,  T >. } ) )
4 0nn0 9380 . . . 4  |-  0  e.  NN0
5 simpl 109 . . . 4  |-  ( ( S  e.  A  /\  T  e.  A )  ->  S  e.  A )
6 opexg 4313 . . . 4  |-  ( ( 0  e.  NN0  /\  S  e.  A )  -> 
<. 0 ,  S >.  e.  _V )
74, 5, 6sylancr 414 . . 3  |-  ( ( S  e.  A  /\  T  e.  A )  -> 
<. 0 ,  S >.  e.  _V )
8 sneqbg 3840 . . 3  |-  ( <.
0 ,  S >.  e. 
_V  ->  ( { <. 0 ,  S >. }  =  { <. 0 ,  T >. }  <->  <. 0 ,  S >.  =  <. 0 ,  T >. ) )
97, 8syl 14 . 2  |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( { <. 0 ,  S >. }  =  { <. 0 ,  T >. }  <->  <. 0 ,  S >.  = 
<. 0 ,  T >. ) )
10 0z 9453 . . . 4  |-  0  e.  ZZ
11 eqid 2229 . . . . 5  |-  0  =  0
12 opthg 4323 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  S  e.  A )  ->  ( <. 0 ,  S >.  =  <. 0 ,  T >.  <-> 
( 0  =  0  /\  S  =  T ) ) )
1312baibd 928 . . . . 5  |-  ( ( ( 0  e.  ZZ  /\  S  e.  A )  /\  0  =  0 )  ->  ( <. 0 ,  S >.  = 
<. 0 ,  T >.  <-> 
S  =  T ) )
1411, 13mpan2 425 . . . 4  |-  ( ( 0  e.  ZZ  /\  S  e.  A )  ->  ( <. 0 ,  S >.  =  <. 0 ,  T >.  <-> 
S  =  T ) )
1510, 14mpan 424 . . 3  |-  ( S  e.  A  ->  ( <. 0 ,  S >.  = 
<. 0 ,  T >.  <-> 
S  =  T ) )
1615adantr 276 . 2  |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( <. 0 ,  S >.  =  <. 0 ,  T >.  <-> 
S  =  T ) )
173, 9, 163bitrd 214 1  |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( <" S ">  =  <" T ">  <->  S  =  T
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669   0cc0 7995   NN0cn0 9365   ZZcz 9442   <"cs1 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-i2m1 8100  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-neg 8316  df-n0 9366  df-z 9443  df-s1 11144
This theorem is referenced by:  pfxsuff1eqwrdeq  11226
  Copyright terms: Public domain W3C validator