ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotslfn Unicode version

Theorem slotslfn 12420
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
Hypothesis
Ref Expression
slotslfn.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
Assertion
Ref Expression
slotslfn  |-  E  Fn  _V

Proof of Theorem slotslfn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . 3  |-  x  e. 
_V
2 slotslfn.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
32simpri 112 . . 3  |-  ( E `
 ndx )  e.  NN
41, 3fvex 5506 . 2  |-  ( x `
 ( E `  ndx ) )  e.  _V
52simpli 110 . . 3  |-  E  = Slot  ( E `  ndx )
6 df-slot 12398 . . 3  |- Slot  ( E `
 ndx )  =  ( x  e.  _V  |->  ( x `  ( E `  ndx ) ) )
75, 6eqtri 2186 . 2  |-  E  =  ( x  e.  _V  |->  ( x `  ( E `  ndx ) ) )
84, 7fnmpti 5316 1  |-  E  Fn  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    |-> cmpt 4043    Fn wfn 5183   ` cfv 5188   NNcn 8857   ndxcnx 12391  Slot cslot 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-slot 12398
This theorem is referenced by:  slotex  12421  basfn  12451  topontopn  12675
  Copyright terms: Public domain W3C validator