ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotslfn Unicode version

Theorem slotslfn 11767
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
Hypothesis
Ref Expression
slotslfn.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
Assertion
Ref Expression
slotslfn  |-  E  Fn  _V

Proof of Theorem slotslfn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2644 . . 3  |-  x  e. 
_V
2 slotslfn.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
32simpri 112 . . 3  |-  ( E `
 ndx )  e.  NN
41, 3fvex 5373 . 2  |-  ( x `
 ( E `  ndx ) )  e.  _V
52simpli 110 . . 3  |-  E  = Slot  ( E `  ndx )
6 df-slot 11745 . . 3  |- Slot  ( E `
 ndx )  =  ( x  e.  _V  |->  ( x `  ( E `  ndx ) ) )
75, 6eqtri 2120 . 2  |-  E  =  ( x  e.  _V  |->  ( x `  ( E `  ndx ) ) )
84, 7fnmpti 5187 1  |-  E  Fn  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1299    e. wcel 1448   _Vcvv 2641    |-> cmpt 3929    Fn wfn 5054   ` cfv 5059   NNcn 8578   ndxcnx 11738  Slot cslot 11740
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-iota 5024  df-fun 5061  df-fn 5062  df-fv 5067  df-slot 11745
This theorem is referenced by:  slotex  11768  basfn  11798  topontopn  11986
  Copyright terms: Public domain W3C validator