ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotslfn Unicode version

Theorem slotslfn 13058
Description: A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
Hypothesis
Ref Expression
slotslfn.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
Assertion
Ref Expression
slotslfn  |-  E  Fn  _V

Proof of Theorem slotslfn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . 3  |-  x  e. 
_V
2 slotslfn.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
32simpri 113 . . 3  |-  ( E `
 ndx )  e.  NN
41, 3fvex 5647 . 2  |-  ( x `
 ( E `  ndx ) )  e.  _V
52simpli 111 . . 3  |-  E  = Slot  ( E `  ndx )
6 df-slot 13036 . . 3  |- Slot  ( E `
 ndx )  =  ( x  e.  _V  |->  ( x `  ( E `  ndx ) ) )
75, 6eqtri 2250 . 2  |-  E  =  ( x  e.  _V  |->  ( x `  ( E `  ndx ) ) )
84, 7fnmpti 5452 1  |-  E  Fn  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    |-> cmpt 4145    Fn wfn 5313   ` cfv 5318   NNcn 9110   ndxcnx 13029  Slot cslot 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-slot 13036
This theorem is referenced by:  slotex  13059  basfn  13091  topontopn  14711
  Copyright terms: Public domain W3C validator