| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxslid | Unicode version | ||
| Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 13072. (Contributed by Jim Kingdon, 29-Jan-2023.) |
| Ref | Expression |
|---|---|
| ndxarg.1 |
|
| ndxarg.2 |
|
| Ref | Expression |
|---|---|
| ndxslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 |
. . 3
| |
| 2 | ndxarg.2 |
. . 3
| |
| 3 | 1, 2 | ndxid 13051 |
. 2
|
| 4 | 1, 2 | ndxarg 13050 |
. . 3
|
| 5 | 4, 2 | eqeltri 2302 |
. 2
|
| 6 | 3, 5 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-inn 9107 df-ndx 13030 df-slot 13031 |
| This theorem is referenced by: base0 13077 baseslid 13085 plusgslid 13140 2stropg 13149 2strop1g 13152 mulrslid 13160 starvslid 13169 scaslid 13181 vscaslid 13191 ipslid 13199 tsetslid 13216 pleslid 13230 dsslid 13245 homslid 13263 ccoslid 13266 prdsbaslemss 13302 zlmlemg 14586 znbaslemnn 14597 iedgvalg 15812 iedgex 15814 edgfiedgval2dom 15830 setsiedg 15847 iedgval0 15849 edgvalg 15854 edgstruct 15858 |
| Copyright terms: Public domain | W3C validator |