| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxslid | Unicode version | ||
| Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12819. (Contributed by Jim Kingdon, 29-Jan-2023.) |
| Ref | Expression |
|---|---|
| ndxarg.1 |
|
| ndxarg.2 |
|
| Ref | Expression |
|---|---|
| ndxslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 |
. . 3
| |
| 2 | ndxarg.2 |
. . 3
| |
| 3 | 1, 2 | ndxid 12798 |
. 2
|
| 4 | 1, 2 | ndxarg 12797 |
. . 3
|
| 5 | 4, 2 | eqeltri 2277 |
. 2
|
| 6 | 3, 5 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fv 5278 df-inn 9036 df-ndx 12777 df-slot 12778 |
| This theorem is referenced by: base0 12824 baseslid 12831 plusgslid 12886 2stropg 12895 2strop1g 12898 mulrslid 12906 starvslid 12915 scaslid 12927 vscaslid 12937 ipslid 12945 tsetslid 12962 pleslid 12976 dsslid 12991 homslid 13009 ccoslid 13012 prdsbaslemss 13048 zlmlemg 14332 znbaslemnn 14343 iedgvalg 15558 edgfiedgval2dom 15574 |
| Copyright terms: Public domain | W3C validator |