ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxslid Unicode version

Theorem ndxslid 12799
Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12819. (Contributed by Jim Kingdon, 29-Jan-2023.)
Hypotheses
Ref Expression
ndxarg.1  |-  E  = Slot 
N
ndxarg.2  |-  N  e.  NN
Assertion
Ref Expression
ndxslid  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )

Proof of Theorem ndxslid
StepHypRef Expression
1 ndxarg.1 . . 3  |-  E  = Slot 
N
2 ndxarg.2 . . 3  |-  N  e.  NN
31, 2ndxid 12798 . 2  |-  E  = Slot  ( E `  ndx )
41, 2ndxarg 12797 . . 3  |-  ( E `
 ndx )  =  N
54, 2eqeltri 2277 . 2  |-  ( E `
 ndx )  e.  NN
63, 5pm3.2i 272 1  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372    e. wcel 2175   ` cfv 5270   NNcn 9035   ndxcnx 12771  Slot cslot 12773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278  df-inn 9036  df-ndx 12777  df-slot 12778
This theorem is referenced by:  base0  12824  baseslid  12831  plusgslid  12886  2stropg  12895  2strop1g  12898  mulrslid  12906  starvslid  12915  scaslid  12927  vscaslid  12937  ipslid  12945  tsetslid  12962  pleslid  12976  dsslid  12991  homslid  13009  ccoslid  13012  prdsbaslemss  13048  zlmlemg  14332  znbaslemnn  14343  iedgvalg  15558  edgfiedgval2dom  15574
  Copyright terms: Public domain W3C validator