ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxslid Unicode version

Theorem ndxslid 12419
Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12438. (Contributed by Jim Kingdon, 29-Jan-2023.)
Hypotheses
Ref Expression
ndxarg.1  |-  E  = Slot 
N
ndxarg.2  |-  N  e.  NN
Assertion
Ref Expression
ndxslid  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )

Proof of Theorem ndxslid
StepHypRef Expression
1 ndxarg.1 . . 3  |-  E  = Slot 
N
2 ndxarg.2 . . 3  |-  N  e.  NN
31, 2ndxid 12418 . 2  |-  E  = Slot  ( E `  ndx )
41, 2ndxarg 12417 . . 3  |-  ( E `
 ndx )  =  N
54, 2eqeltri 2239 . 2  |-  ( E `
 ndx )  e.  NN
63, 5pm3.2i 270 1  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   ` cfv 5188   NNcn 8857   ndxcnx 12391  Slot cslot 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-inn 8858  df-ndx 12397  df-slot 12398
This theorem is referenced by:  base0  12443  baseslid  12450  plusgslid  12490  2stropg  12497  2strop1g  12500  mulrslid  12507  starvslid  12516  scaslid  12524  vscaslid  12527  ipslid  12535  tsetslid  12545  pleslid  12552  dsslid  12555
  Copyright terms: Public domain W3C validator