| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxslid | Unicode version | ||
| Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12952. (Contributed by Jim Kingdon, 29-Jan-2023.) |
| Ref | Expression |
|---|---|
| ndxarg.1 |
|
| ndxarg.2 |
|
| Ref | Expression |
|---|---|
| ndxslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 |
. . 3
| |
| 2 | ndxarg.2 |
. . 3
| |
| 3 | 1, 2 | ndxid 12931 |
. 2
|
| 4 | 1, 2 | ndxarg 12930 |
. . 3
|
| 5 | 4, 2 | eqeltri 2279 |
. 2
|
| 6 | 3, 5 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fv 5288 df-inn 9057 df-ndx 12910 df-slot 12911 |
| This theorem is referenced by: base0 12957 baseslid 12964 plusgslid 13019 2stropg 13028 2strop1g 13031 mulrslid 13039 starvslid 13048 scaslid 13060 vscaslid 13070 ipslid 13078 tsetslid 13095 pleslid 13109 dsslid 13124 homslid 13142 ccoslid 13145 prdsbaslemss 13181 zlmlemg 14465 znbaslemnn 14476 iedgvalg 15691 iedgex 15693 edgfiedgval2dom 15709 iedgval0 15726 edgvalg 15731 edgstruct 15735 |
| Copyright terms: Public domain | W3C validator |