![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ndxslid | Unicode version |
Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12663. (Contributed by Jim Kingdon, 29-Jan-2023.) |
Ref | Expression |
---|---|
ndxarg.1 |
![]() ![]() ![]() ![]() |
ndxarg.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ndxslid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndxarg.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | ndxarg.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | ndxid 12642 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 2 | ndxarg 12641 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4, 2 | eqeltri 2266 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | pm3.2i 272 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-inn 8983 df-ndx 12621 df-slot 12622 |
This theorem is referenced by: base0 12668 baseslid 12675 plusgslid 12730 2stropg 12738 2strop1g 12741 mulrslid 12749 starvslid 12758 scaslid 12770 vscaslid 12780 ipslid 12788 tsetslid 12805 pleslid 12819 dsslid 12830 homslid 12847 ccoslid 12849 zlmlemg 14116 znbaslemnn 14127 |
Copyright terms: Public domain | W3C validator |