| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basfn | Unicode version | ||
| Description: The base set extractor is
a function on |
| Ref | Expression |
|---|---|
| basfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 12964 |
. 2
| |
| 2 | 1 | slotslfn 12933 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-inn 9057 df-ndx 12910 df-slot 12911 df-base 12913 |
| This theorem is referenced by: basmex 12966 basmexd 12967 ressbas2d 12975 ressbasid 12977 strressid 12978 ressval3d 12979 prdsex 13176 prdsval 13180 prdsbaslemss 13181 prdsbas 13183 prdsplusg 13184 prdsmulr 13185 pwsbas 13199 pwselbasb 13200 pwssnf1o 13205 imasex 13212 imasival 13213 imasbas 13214 imasplusg 13215 imasmulr 13216 imasaddfn 13224 imasaddval 13225 imasaddf 13226 imasmulfn 13227 imasmulval 13228 imasmulf 13229 qusval 13230 qusex 13232 qusaddvallemg 13240 qusaddflemg 13241 qusaddval 13242 qusaddf 13243 qusmulval 13244 qusmulf 13245 xpsval 13259 ismgm 13264 ismgmn0 13265 plusffvalg 13269 grpidvalg 13280 fn0g 13282 gsumress 13302 issgrp 13310 ismnddef 13325 issubmnd 13349 ress0g 13350 ismhm 13368 mhmex 13369 issubm 13379 grppropstrg 13426 grpinvfvalg 13449 grpinvval 13450 grpinvfng 13451 grpsubfvalg 13452 grpsubval 13453 grpressid 13468 grplactfval 13508 qusgrp2 13524 mulgfvalg 13532 mulgval 13533 mulgex 13534 mulgfng 13535 issubg 13584 subgex 13587 issubg2m 13600 isnsg 13613 releqgg 13631 eqgex 13632 eqgfval 13633 eqgen 13638 isghm 13654 ablressid 13746 isrng 13771 rngressid 13791 qusrng 13795 issrg 13802 isring 13837 ringidss 13866 ringressid 13900 qusring2 13903 reldvdsrsrg 13929 dvdsrvald 13930 dvdsrex 13935 unitgrp 13953 unitabl 13954 invrfvald 13959 unitlinv 13963 unitrinv 13964 dvrfvald 13970 rdivmuldivd 13981 invrpropdg 13986 dfrhm2 13991 rhmex 13994 rhmunitinv 14015 isnzr2 14021 issubrng 14036 issubrg 14058 subrgugrp 14077 rrgval 14099 isdomn 14106 aprval 14119 aprap 14123 islmod 14128 scaffvalg 14143 rmodislmod 14188 lssex 14191 lsssetm 14193 islssm 14194 islssmg 14195 islss3 14216 lspfval 14225 lspval 14227 lspcl 14228 lspex 14232 sraval 14274 sralemg 14275 srascag 14279 sravscag 14280 sraipg 14281 sraex 14283 qusrhm 14365 psrval 14503 fnpsr 14504 psrbasg 14511 psrelbas 14512 psrplusgg 14515 psraddcl 14517 psr0cl 14518 psrnegcl 14520 psr1clfi 14525 mplvalcoe 14527 fnmpl 14530 mplplusgg 14540 vtxvalg 15690 vtxex 15692 |
| Copyright terms: Public domain | W3C validator |