![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > basfn | Unicode version |
Description: The base set extractor is
a function on ![]() |
Ref | Expression |
---|---|
basfn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseslid 12569 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | slotslfn 12538 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7932 ax-resscn 7933 ax-1re 7935 ax-addrcl 7938 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-inn 8950 df-ndx 12515 df-slot 12516 df-base 12518 |
This theorem is referenced by: basmex 12571 basmexd 12572 ressbas2d 12580 ressbasid 12582 strressid 12583 ressval3d 12584 prdsex 12774 imasex 12782 imasival 12783 imasbas 12784 imasplusg 12785 imasmulr 12786 imasaddfn 12794 imasaddval 12795 imasaddf 12796 imasmulfn 12797 imasmulval 12798 imasmulf 12799 qusval 12800 qusex 12802 qusaddvallemg 12809 qusaddflemg 12810 qusaddval 12811 qusaddf 12812 qusmulval 12813 qusmulf 12814 xpsval 12828 ismgm 12833 ismgmn0 12834 plusffvalg 12838 grpidvalg 12849 fn0g 12851 issgrp 12866 ismnddef 12879 issubmnd 12903 ress0g 12904 ismhm 12913 mhmex 12914 issubm 12924 grppropstrg 12964 grpinvfvalg 12986 grpinvval 12987 grpinvfng 12988 grpsubfvalg 12989 grpsubval 12990 grpressid 13005 grplactfval 13045 qusgrp2 13055 mulgfvalg 13063 mulgval 13064 mulgex 13065 mulgfng 13066 issubg 13112 subgex 13115 issubg2m 13128 isnsg 13141 releqgg 13159 eqgex 13160 eqgfval 13161 eqgen 13166 isghm 13182 ablressid 13272 isrng 13288 rngressid 13308 qusrng 13312 issrg 13319 isring 13354 ringidss 13383 ringressid 13413 qusring2 13416 reldvdsrsrg 13442 dvdsrvald 13443 dvdsrex 13448 unitgrp 13466 unitabl 13467 invrfvald 13472 unitlinv 13476 unitrinv 13477 dvrfvald 13483 rdivmuldivd 13494 invrpropdg 13499 dfrhm2 13504 rhmex 13507 rhmunitinv 13528 issubrng 13546 issubrg 13568 subrgugrp 13587 aprval 13598 aprap 13602 islmod 13607 scaffvalg 13622 rmodislmod 13667 lssex 13670 lsssetm 13672 islssm 13673 islssmg 13674 islss3 13695 lspfval 13704 lspval 13706 lspcl 13707 lspex 13711 sraval 13753 sralemg 13754 srascag 13758 sravscag 13759 sraipg 13760 sraex 13762 psrval 13944 fnpsr 13945 psrbasg 13951 psrelbas 13952 |
Copyright terms: Public domain | W3C validator |