| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basfn | Unicode version | ||
| Description: The base set extractor is
a function on |
| Ref | Expression |
|---|---|
| basfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 12831 |
. 2
| |
| 2 | 1 | slotslfn 12800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-inn 9036 df-ndx 12777 df-slot 12778 df-base 12780 |
| This theorem is referenced by: basmex 12833 basmexd 12834 ressbas2d 12842 ressbasid 12844 strressid 12845 ressval3d 12846 prdsex 13043 prdsval 13047 prdsbaslemss 13048 prdsbas 13050 prdsplusg 13051 prdsmulr 13052 pwsbas 13066 pwselbasb 13067 pwssnf1o 13072 imasex 13079 imasival 13080 imasbas 13081 imasplusg 13082 imasmulr 13083 imasaddfn 13091 imasaddval 13092 imasaddf 13093 imasmulfn 13094 imasmulval 13095 imasmulf 13096 qusval 13097 qusex 13099 qusaddvallemg 13107 qusaddflemg 13108 qusaddval 13109 qusaddf 13110 qusmulval 13111 qusmulf 13112 xpsval 13126 ismgm 13131 ismgmn0 13132 plusffvalg 13136 grpidvalg 13147 fn0g 13149 gsumress 13169 issgrp 13177 ismnddef 13192 issubmnd 13216 ress0g 13217 ismhm 13235 mhmex 13236 issubm 13246 grppropstrg 13293 grpinvfvalg 13316 grpinvval 13317 grpinvfng 13318 grpsubfvalg 13319 grpsubval 13320 grpressid 13335 grplactfval 13375 qusgrp2 13391 mulgfvalg 13399 mulgval 13400 mulgex 13401 mulgfng 13402 issubg 13451 subgex 13454 issubg2m 13467 isnsg 13480 releqgg 13498 eqgex 13499 eqgfval 13500 eqgen 13505 isghm 13521 ablressid 13613 isrng 13638 rngressid 13658 qusrng 13662 issrg 13669 isring 13704 ringidss 13733 ringressid 13767 qusring2 13770 reldvdsrsrg 13796 dvdsrvald 13797 dvdsrex 13802 unitgrp 13820 unitabl 13821 invrfvald 13826 unitlinv 13830 unitrinv 13831 dvrfvald 13837 rdivmuldivd 13848 invrpropdg 13853 dfrhm2 13858 rhmex 13861 rhmunitinv 13882 isnzr2 13888 issubrng 13903 issubrg 13925 subrgugrp 13944 rrgval 13966 isdomn 13973 aprval 13986 aprap 13990 islmod 13995 scaffvalg 14010 rmodislmod 14055 lssex 14058 lsssetm 14060 islssm 14061 islssmg 14062 islss3 14083 lspfval 14092 lspval 14094 lspcl 14095 lspex 14099 sraval 14141 sralemg 14142 srascag 14146 sravscag 14147 sraipg 14148 sraex 14150 qusrhm 14232 psrval 14370 fnpsr 14371 psrbasg 14378 psrelbas 14379 psrplusgg 14382 psraddcl 14384 psr0cl 14385 psrnegcl 14387 psr1clfi 14392 mplvalcoe 14394 fnmpl 14397 mplplusgg 14407 vtxvalg 15557 |
| Copyright terms: Public domain | W3C validator |