| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basfn | Unicode version | ||
| Description: The base set extractor is
a function on |
| Ref | Expression |
|---|---|
| basfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 12808 |
. 2
| |
| 2 | 1 | slotslfn 12777 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-inn 9019 df-ndx 12754 df-slot 12755 df-base 12757 |
| This theorem is referenced by: basmex 12810 basmexd 12811 ressbas2d 12819 ressbasid 12821 strressid 12822 ressval3d 12823 prdsex 13019 prdsval 13023 prdsbaslemss 13024 prdsbas 13026 prdsplusg 13027 prdsmulr 13028 pwsbas 13042 pwselbasb 13043 pwssnf1o 13048 imasex 13055 imasival 13056 imasbas 13057 imasplusg 13058 imasmulr 13059 imasaddfn 13067 imasaddval 13068 imasaddf 13069 imasmulfn 13070 imasmulval 13071 imasmulf 13072 qusval 13073 qusex 13075 qusaddvallemg 13083 qusaddflemg 13084 qusaddval 13085 qusaddf 13086 qusmulval 13087 qusmulf 13088 xpsval 13102 ismgm 13107 ismgmn0 13108 plusffvalg 13112 grpidvalg 13123 fn0g 13125 gsumress 13145 issgrp 13153 ismnddef 13168 issubmnd 13192 ress0g 13193 ismhm 13211 mhmex 13212 issubm 13222 grppropstrg 13269 grpinvfvalg 13292 grpinvval 13293 grpinvfng 13294 grpsubfvalg 13295 grpsubval 13296 grpressid 13311 grplactfval 13351 qusgrp2 13367 mulgfvalg 13375 mulgval 13376 mulgex 13377 mulgfng 13378 issubg 13427 subgex 13430 issubg2m 13443 isnsg 13456 releqgg 13474 eqgex 13475 eqgfval 13476 eqgen 13481 isghm 13497 ablressid 13589 isrng 13614 rngressid 13634 qusrng 13638 issrg 13645 isring 13680 ringidss 13709 ringressid 13743 qusring2 13746 reldvdsrsrg 13772 dvdsrvald 13773 dvdsrex 13778 unitgrp 13796 unitabl 13797 invrfvald 13802 unitlinv 13806 unitrinv 13807 dvrfvald 13813 rdivmuldivd 13824 invrpropdg 13829 dfrhm2 13834 rhmex 13837 rhmunitinv 13858 isnzr2 13864 issubrng 13879 issubrg 13901 subrgugrp 13920 rrgval 13942 isdomn 13949 aprval 13962 aprap 13966 islmod 13971 scaffvalg 13986 rmodislmod 14031 lssex 14034 lsssetm 14036 islssm 14037 islssmg 14038 islss3 14059 lspfval 14068 lspval 14070 lspcl 14071 lspex 14075 sraval 14117 sralemg 14118 srascag 14122 sravscag 14123 sraipg 14124 sraex 14126 qusrhm 14208 psrval 14346 fnpsr 14347 psrbasg 14354 psrelbas 14355 psrplusgg 14358 psraddcl 14360 psr0cl 14361 psrnegcl 14363 psr1clfi 14368 mplvalcoe 14370 fnmpl 14373 mplplusgg 14383 |
| Copyright terms: Public domain | W3C validator |