| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basfn | Unicode version | ||
| Description: The base set extractor is
a function on |
| Ref | Expression |
|---|---|
| basfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 13085 |
. 2
| |
| 2 | 1 | slotslfn 13053 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 |
| This theorem is referenced by: basmex 13087 basmexd 13088 ressbas2d 13096 ressbasid 13098 strressid 13099 ressval3d 13100 prdsex 13297 prdsval 13301 prdsbaslemss 13302 prdsbas 13304 prdsplusg 13305 prdsmulr 13306 pwsbas 13320 pwselbasb 13321 pwssnf1o 13326 imasex 13333 imasival 13334 imasbas 13335 imasplusg 13336 imasmulr 13337 imasaddfn 13345 imasaddval 13346 imasaddf 13347 imasmulfn 13348 imasmulval 13349 imasmulf 13350 qusval 13351 qusex 13353 qusaddvallemg 13361 qusaddflemg 13362 qusaddval 13363 qusaddf 13364 qusmulval 13365 qusmulf 13366 xpsval 13380 ismgm 13385 ismgmn0 13386 plusffvalg 13390 grpidvalg 13401 fn0g 13403 gsumress 13423 issgrp 13431 ismnddef 13446 issubmnd 13470 ress0g 13471 ismhm 13489 mhmex 13490 issubm 13500 grppropstrg 13547 grpinvfvalg 13570 grpinvval 13571 grpinvfng 13572 grpsubfvalg 13573 grpsubval 13574 grpressid 13589 grplactfval 13629 qusgrp2 13645 mulgfvalg 13653 mulgval 13654 mulgex 13655 mulgfng 13656 issubg 13705 subgex 13708 issubg2m 13721 isnsg 13734 releqgg 13752 eqgex 13753 eqgfval 13754 eqgen 13759 isghm 13775 ablressid 13867 isrng 13892 rngressid 13912 qusrng 13916 issrg 13923 isring 13958 ringidss 13987 ringressid 14021 qusring2 14024 reldvdsrsrg 14050 dvdsrvald 14051 dvdsrex 14056 unitgrp 14074 unitabl 14075 invrfvald 14080 unitlinv 14084 unitrinv 14085 dvrfvald 14091 rdivmuldivd 14102 invrpropdg 14107 dfrhm2 14112 rhmex 14115 rhmunitinv 14136 isnzr2 14142 issubrng 14157 issubrg 14179 subrgugrp 14198 rrgval 14220 isdomn 14227 aprval 14240 aprap 14244 islmod 14249 scaffvalg 14264 rmodislmod 14309 lssex 14312 lsssetm 14314 islssm 14315 islssmg 14316 islss3 14337 lspfval 14346 lspval 14348 lspcl 14349 lspex 14353 sraval 14395 sralemg 14396 srascag 14400 sravscag 14401 sraipg 14402 sraex 14404 qusrhm 14486 psrval 14624 fnpsr 14625 psrbasg 14632 psrelbas 14633 psrplusgg 14636 psraddcl 14638 psr0cl 14639 psrnegcl 14641 psr1clfi 14646 mplvalcoe 14648 fnmpl 14651 mplplusgg 14661 vtxvalg 15811 vtxex 15813 |
| Copyright terms: Public domain | W3C validator |