| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > basfn | Unicode version | ||
| Description: The base set extractor is
a function on  | 
| Ref | Expression | 
|---|---|
| basfn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | baseslid 12735 | 
. 2
 | |
| 2 | 1 | slotslfn 12704 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 | 
| This theorem is referenced by: basmex 12737 basmexd 12738 ressbas2d 12746 ressbasid 12748 strressid 12749 ressval3d 12750 prdsex 12940 imasex 12948 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 imasaddfn 12960 imasaddval 12961 imasaddf 12962 imasmulfn 12963 imasmulval 12964 imasmulf 12965 qusval 12966 qusex 12968 qusaddvallemg 12976 qusaddflemg 12977 qusaddval 12978 qusaddf 12979 qusmulval 12980 qusmulf 12981 xpsval 12995 ismgm 13000 ismgmn0 13001 plusffvalg 13005 grpidvalg 13016 fn0g 13018 gsumress 13038 issgrp 13046 ismnddef 13059 issubmnd 13083 ress0g 13084 ismhm 13093 mhmex 13094 issubm 13104 grppropstrg 13151 grpinvfvalg 13174 grpinvval 13175 grpinvfng 13176 grpsubfvalg 13177 grpsubval 13178 grpressid 13193 grplactfval 13233 qusgrp2 13243 mulgfvalg 13251 mulgval 13252 mulgex 13253 mulgfng 13254 issubg 13303 subgex 13306 issubg2m 13319 isnsg 13332 releqgg 13350 eqgex 13351 eqgfval 13352 eqgen 13357 isghm 13373 ablressid 13465 isrng 13490 rngressid 13510 qusrng 13514 issrg 13521 isring 13556 ringidss 13585 ringressid 13619 qusring2 13622 reldvdsrsrg 13648 dvdsrvald 13649 dvdsrex 13654 unitgrp 13672 unitabl 13673 invrfvald 13678 unitlinv 13682 unitrinv 13683 dvrfvald 13689 rdivmuldivd 13700 invrpropdg 13705 dfrhm2 13710 rhmex 13713 rhmunitinv 13734 isnzr2 13740 issubrng 13755 issubrg 13777 subrgugrp 13796 rrgval 13818 isdomn 13825 aprval 13838 aprap 13842 islmod 13847 scaffvalg 13862 rmodislmod 13907 lssex 13910 lsssetm 13912 islssm 13913 islssmg 13914 islss3 13935 lspfval 13944 lspval 13946 lspcl 13947 lspex 13951 sraval 13993 sralemg 13994 srascag 13998 sravscag 13999 sraipg 14000 sraex 14002 qusrhm 14084 psrval 14220 fnpsr 14221 psrbasg 14227 psrelbas 14228 psrplusgg 14230 psraddcl 14232 | 
| Copyright terms: Public domain | W3C validator |