![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > basfn | Unicode version |
Description: The base set extractor is
a function on ![]() |
Ref | Expression |
---|---|
basfn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseslid 12678 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | slotslfn 12647 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 |
This theorem is referenced by: basmex 12680 basmexd 12681 ressbas2d 12689 ressbasid 12691 strressid 12692 ressval3d 12693 prdsex 12883 imasex 12891 imasival 12892 imasbas 12893 imasplusg 12894 imasmulr 12895 imasaddfn 12903 imasaddval 12904 imasaddf 12905 imasmulfn 12906 imasmulval 12907 imasmulf 12908 qusval 12909 qusex 12911 qusaddvallemg 12919 qusaddflemg 12920 qusaddval 12921 qusaddf 12922 qusmulval 12923 qusmulf 12924 xpsval 12938 ismgm 12943 ismgmn0 12944 plusffvalg 12948 grpidvalg 12959 fn0g 12961 gsumress 12981 issgrp 12989 ismnddef 13002 issubmnd 13026 ress0g 13027 ismhm 13036 mhmex 13037 issubm 13047 grppropstrg 13094 grpinvfvalg 13117 grpinvval 13118 grpinvfng 13119 grpsubfvalg 13120 grpsubval 13121 grpressid 13136 grplactfval 13176 qusgrp2 13186 mulgfvalg 13194 mulgval 13195 mulgex 13196 mulgfng 13197 issubg 13246 subgex 13249 issubg2m 13262 isnsg 13275 releqgg 13293 eqgex 13294 eqgfval 13295 eqgen 13300 isghm 13316 ablressid 13408 isrng 13433 rngressid 13453 qusrng 13457 issrg 13464 isring 13499 ringidss 13528 ringressid 13562 qusring2 13565 reldvdsrsrg 13591 dvdsrvald 13592 dvdsrex 13597 unitgrp 13615 unitabl 13616 invrfvald 13621 unitlinv 13625 unitrinv 13626 dvrfvald 13632 rdivmuldivd 13643 invrpropdg 13648 dfrhm2 13653 rhmex 13656 rhmunitinv 13677 isnzr2 13683 issubrng 13698 issubrg 13720 subrgugrp 13739 rrgval 13761 isdomn 13768 aprval 13781 aprap 13785 islmod 13790 scaffvalg 13805 rmodislmod 13850 lssex 13853 lsssetm 13855 islssm 13856 islssmg 13857 islss3 13878 lspfval 13887 lspval 13889 lspcl 13890 lspex 13894 sraval 13936 sralemg 13937 srascag 13941 sravscag 13942 sraipg 13943 sraex 13945 qusrhm 14027 psrval 14163 fnpsr 14164 psrbasg 14170 psrelbas 14171 psrplusgg 14173 psraddcl 14175 |
Copyright terms: Public domain | W3C validator |