ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvex Unicode version

Theorem fvex 5579
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
Hypotheses
Ref Expression
fvex.1  |-  F  e.  V
fvex.2  |-  A  e.  W
Assertion
Ref Expression
fvex  |-  ( F `
 A )  e. 
_V

Proof of Theorem fvex
StepHypRef Expression
1 fvex.1 . 2  |-  F  e.  V
2 fvex.2 . 2  |-  A  e.  W
3 fvexg 5578 . 2  |-  ( ( F  e.  V  /\  A  e.  W )  ->  ( F `  A
)  e.  _V )
41, 2, 3mp2an 426 1  |-  ( F `
 A )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-cnv 4672  df-dm 4674  df-rn 4675  df-iota 5220  df-fv 5267
This theorem is referenced by:  uchoice  6196  rdgtfr  6433  rdgruledefgg  6434  mapsnf1o2  6756  ixpiinm  6784  mapsnen  6871  xpdom2  6891  mapxpen  6910  xpmapenlem  6911  phplem4  6917  ac6sfi  6960  fiintim  6993  acfun  7276  ccfunen  7333  ioof  10048  frec2uzrand  10499  frec2uzf1od  10500  frecfzennn  10520  hashinfom  10872  fsum3  11554  slotslfn  12714  ptex  12945  znval  14202  elply2  14981
  Copyright terms: Public domain W3C validator