![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvex | Unicode version |
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
Ref | Expression |
---|---|
fvex.1 |
![]() ![]() ![]() ![]() |
fvex.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fvex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | fvex.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | fvexg 5318 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2an 417 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 ax-un 4258 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-br 3844 df-opab 3898 df-cnv 4444 df-dm 4446 df-rn 4447 df-iota 4975 df-fv 5018 |
This theorem is referenced by: rdgtfr 6131 rdgruledefgg 6132 mapsnf1o2 6443 mapsnen 6518 xpdom2 6537 mapxpen 6554 xpmapenlem 6555 phplem4 6561 ac6sfi 6604 fiintim 6629 ioof 9379 frec2uzrand 9800 frec2uzf1od 9801 frecfzennn 9821 hashinfom 10174 fisum 10765 |
Copyright terms: Public domain | W3C validator |