![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvex | Unicode version |
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
Ref | Expression |
---|---|
fvex.1 |
![]() ![]() ![]() ![]() |
fvex.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fvex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | fvex.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | fvexg 5548 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2an 426 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-v 2753 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-opab 4079 df-cnv 4648 df-dm 4650 df-rn 4651 df-iota 5192 df-fv 5238 |
This theorem is referenced by: rdgtfr 6392 rdgruledefgg 6393 mapsnf1o2 6713 ixpiinm 6741 mapsnen 6828 xpdom2 6848 mapxpen 6865 xpmapenlem 6866 phplem4 6872 ac6sfi 6915 fiintim 6945 acfun 7223 ccfunen 7280 ioof 9988 frec2uzrand 10422 frec2uzf1od 10423 frecfzennn 10443 hashinfom 10775 fsum3 11412 slotslfn 12505 ptex 12734 |
Copyright terms: Public domain | W3C validator |