| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvex | Unicode version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvex.1 |
|
| fvex.2 |
|
| Ref | Expression |
|---|---|
| fvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex.1 |
. 2
| |
| 2 | fvex.2 |
. 2
| |
| 3 | fvexg 5645 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: uchoice 6281 rdgtfr 6518 rdgruledefgg 6519 mapsnf1o2 6841 ixpiinm 6869 mapsnen 6962 xpdom2 6986 mapxpen 7005 xpmapenlem 7006 phplem4 7012 ac6sfi 7056 fiintim 7089 pr2cv1 7364 acfun 7385 ccfunen 7446 ioof 10163 frec2uzrand 10622 frec2uzf1od 10623 frecfzennn 10643 hashinfom 10995 fsum3 11893 slotslfn 13053 ptex 13292 prdsvallem 13300 prdsval 13301 znval 14594 elply2 15403 |
| Copyright terms: Public domain | W3C validator |