| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvex | Unicode version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvex.1 |
|
| fvex.2 |
|
| Ref | Expression |
|---|---|
| fvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex.1 |
. 2
| |
| 2 | fvex.2 |
. 2
| |
| 3 | fvexg 5608 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-cnv 4691 df-dm 4693 df-rn 4694 df-iota 5241 df-fv 5288 |
| This theorem is referenced by: uchoice 6236 rdgtfr 6473 rdgruledefgg 6474 mapsnf1o2 6796 ixpiinm 6824 mapsnen 6917 xpdom2 6941 mapxpen 6960 xpmapenlem 6961 phplem4 6967 ac6sfi 7010 fiintim 7043 acfun 7335 ccfunen 7396 ioof 10113 frec2uzrand 10572 frec2uzf1od 10573 frecfzennn 10593 hashinfom 10945 fsum3 11773 slotslfn 12933 ptex 13171 prdsvallem 13179 prdsval 13180 znval 14473 elply2 15282 |
| Copyright terms: Public domain | W3C validator |