ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvex Unicode version

Theorem fvex 5319
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
Hypotheses
Ref Expression
fvex.1  |-  F  e.  V
fvex.2  |-  A  e.  W
Assertion
Ref Expression
fvex  |-  ( F `
 A )  e. 
_V

Proof of Theorem fvex
StepHypRef Expression
1 fvex.1 . 2  |-  F  e.  V
2 fvex.2 . 2  |-  A  e.  W
3 fvexg 5318 . 2  |-  ( ( F  e.  V  /\  A  e.  W )  ->  ( F `  A
)  e.  _V )
41, 2, 3mp2an 417 1  |-  ( F `
 A )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 1438   _Vcvv 2619   ` cfv 5010
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034  ax-un 4258
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-br 3844  df-opab 3898  df-cnv 4444  df-dm 4446  df-rn 4447  df-iota 4975  df-fv 5018
This theorem is referenced by:  rdgtfr  6131  rdgruledefgg  6132  mapsnf1o2  6443  mapsnen  6518  xpdom2  6537  mapxpen  6554  xpmapenlem  6555  phplem4  6561  ac6sfi  6604  fiintim  6629  ioof  9379  frec2uzrand  9800  frec2uzf1od  9801  frecfzennn  9821  hashinfom  10174  fisum  10765
  Copyright terms: Public domain W3C validator