Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvex | Unicode version |
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
Ref | Expression |
---|---|
fvex.1 | |
fvex.2 |
Ref | Expression |
---|---|
fvex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex.1 | . 2 | |
2 | fvex.2 | . 2 | |
3 | fvexg 5490 | . 2 | |
4 | 1, 2, 3 | mp2an 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 cvv 2712 cfv 5173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4085 ax-pow 4138 ax-pr 4172 ax-un 4396 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-opab 4029 df-cnv 4597 df-dm 4599 df-rn 4600 df-iota 5138 df-fv 5181 |
This theorem is referenced by: rdgtfr 6324 rdgruledefgg 6325 mapsnf1o2 6644 ixpiinm 6672 mapsnen 6759 xpdom2 6779 mapxpen 6796 xpmapenlem 6797 phplem4 6803 ac6sfi 6846 fiintim 6876 acfun 7145 ccfunen 7187 ioof 9882 frec2uzrand 10314 frec2uzf1od 10315 frecfzennn 10335 hashinfom 10664 fsum3 11296 slotslfn 12312 |
Copyright terms: Public domain | W3C validator |