| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > slotex | Unicode version | ||
| Description: Existence of slot value. A corollary of slotslfn 12704. (Contributed by Jim Kingdon, 12-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| slotslfn.e | 
 | 
| Ref | Expression | 
|---|---|
| slotex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | slotslfn.e | 
. . 3
 | |
| 2 | 1 | slotslfn 12704 | 
. 2
 | 
| 3 | elex 2774 | 
. 2
 | |
| 4 | funfvex 5575 | 
. . 3
 | |
| 5 | 4 | funfni 5358 | 
. 2
 | 
| 6 | 2, 3, 5 | sylancr 414 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-slot 12682 | 
| This theorem is referenced by: topnfn 12915 topnvalg 12922 topnidg 12923 imasex 12948 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 imasaddfn 12960 imasaddval 12961 imasaddf 12962 imasmulfn 12963 imasmulval 12964 imasmulf 12965 qusaddval 12978 qusaddf 12979 qusmulval 12980 qusmulf 12981 xpsval 12995 ismgm 13000 plusfvalg 13006 plusffng 13008 gsumpropd2 13036 gsumsplit1r 13041 gsumprval 13042 issgrp 13046 ismnddef 13059 gsumfzz 13127 gsumwsubmcl 13128 gsumwmhm 13130 gsumfzcl 13131 grppropstrg 13151 grpsubval 13178 mulgval 13252 mulgfng 13254 mulgnngsum 13257 mulg1 13259 mulgnnp1 13260 mulgnndir 13281 subgintm 13328 isnsg 13332 gsumfzreidx 13467 gsumfzsubmcl 13468 gsumfzmptfidmadd 13469 gsumfzconst 13471 gsumfzmhm 13473 fnmgp 13478 mgpvalg 13479 mgpplusgg 13480 mgpex 13481 mgpbasg 13482 mgpscag 13483 mgptsetg 13484 mgpdsg 13486 mgpress 13487 isrng 13490 issrg 13521 isring 13556 opprvalg 13625 opprmulfvalg 13626 opprex 13629 opprsllem 13630 subrngintm 13768 islmod 13847 scaffvalg 13862 scafvalg 13863 scaffng 13865 rmodislmodlem 13906 rmodislmod 13907 lsssn0 13926 lss1d 13939 lssintclm 13940 ellspsn 13973 sraval 13993 sralemg 13994 srascag 13998 sravscag 13999 sraipg 14000 sraex 14002 crngridl 14086 znbaslemnn 14195 | 
| Copyright terms: Public domain | W3C validator |