| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotex | Unicode version | ||
| Description: Existence of slot value. A corollary of slotslfn 13058. (Contributed by Jim Kingdon, 12-Feb-2023.) |
| Ref | Expression |
|---|---|
| slotslfn.e |
|
| Ref | Expression |
|---|---|
| slotex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slotslfn.e |
. . 3
| |
| 2 | 1 | slotslfn 13058 |
. 2
|
| 3 | elex 2811 |
. 2
| |
| 4 | funfvex 5644 |
. . 3
| |
| 5 | 4 | funfni 5423 |
. 2
|
| 6 | 2, 3, 5 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-slot 13036 |
| This theorem is referenced by: topnfn 13277 topnvalg 13284 topnidg 13285 prdsplusgfval 13317 prdsmulrfval 13319 pwsval 13324 pwsbas 13325 pwsplusgval 13328 pwsmulrval 13329 imasex 13338 imasival 13339 imasbas 13340 imasplusg 13341 imasmulr 13342 imasaddfn 13350 imasaddval 13351 imasaddf 13352 imasmulfn 13353 imasmulval 13354 imasmulf 13355 qusaddval 13368 qusaddf 13369 qusmulval 13370 qusmulf 13371 xpsval 13385 ismgm 13390 plusfvalg 13396 plusffng 13398 gsumpropd2 13426 gsumsplit1r 13431 gsumprval 13432 issgrp 13436 ismnddef 13451 pwsmnd 13483 pws0g 13484 gsumfzz 13528 gsumwsubmcl 13529 gsumwmhm 13531 gsumfzcl 13532 grppropstrg 13552 grpsubval 13579 pwsgrp 13644 pwsinvg 13645 mulgval 13659 mulgfng 13661 mulgnngsum 13664 mulg1 13666 mulgnnp1 13667 mulgnndir 13688 subgintm 13735 isnsg 13739 gsumfzreidx 13874 gsumfzsubmcl 13875 gsumfzmptfidmadd 13876 gsumfzconst 13878 gsumfzmhm 13880 fnmgp 13885 mgpvalg 13886 mgpplusgg 13887 mgpex 13888 mgpbasg 13889 mgpscag 13890 mgptsetg 13891 mgpdsg 13893 mgpress 13894 isrng 13897 issrg 13928 isring 13963 opprvalg 14032 opprmulfvalg 14033 opprex 14036 opprsllem 14037 subrngintm 14176 islmod 14255 scaffvalg 14270 scafvalg 14271 scaffng 14273 rmodislmodlem 14314 rmodislmod 14315 lsssn0 14334 lss1d 14347 lssintclm 14348 ellspsn 14381 sraval 14401 sralemg 14402 srascag 14406 sravscag 14407 sraipg 14408 sraex 14410 crngridl 14494 znbaslemnn 14603 iedgvalg 15818 iedgex 15820 edgvalg 15860 edgstruct 15864 |
| Copyright terms: Public domain | W3C validator |