| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotex | Unicode version | ||
| Description: Existence of slot value. A corollary of slotslfn 12973. (Contributed by Jim Kingdon, 12-Feb-2023.) |
| Ref | Expression |
|---|---|
| slotslfn.e |
|
| Ref | Expression |
|---|---|
| slotex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slotslfn.e |
. . 3
| |
| 2 | 1 | slotslfn 12973 |
. 2
|
| 3 | elex 2788 |
. 2
| |
| 4 | funfvex 5616 |
. . 3
| |
| 5 | 4 | funfni 5395 |
. 2
|
| 6 | 2, 3, 5 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-slot 12951 |
| This theorem is referenced by: topnfn 13191 topnvalg 13198 topnidg 13199 prdsplusgfval 13231 prdsmulrfval 13233 pwsval 13238 pwsbas 13239 pwsplusgval 13242 pwsmulrval 13243 imasex 13252 imasival 13253 imasbas 13254 imasplusg 13255 imasmulr 13256 imasaddfn 13264 imasaddval 13265 imasaddf 13266 imasmulfn 13267 imasmulval 13268 imasmulf 13269 qusaddval 13282 qusaddf 13283 qusmulval 13284 qusmulf 13285 xpsval 13299 ismgm 13304 plusfvalg 13310 plusffng 13312 gsumpropd2 13340 gsumsplit1r 13345 gsumprval 13346 issgrp 13350 ismnddef 13365 pwsmnd 13397 pws0g 13398 gsumfzz 13442 gsumwsubmcl 13443 gsumwmhm 13445 gsumfzcl 13446 grppropstrg 13466 grpsubval 13493 pwsgrp 13558 pwsinvg 13559 mulgval 13573 mulgfng 13575 mulgnngsum 13578 mulg1 13580 mulgnnp1 13581 mulgnndir 13602 subgintm 13649 isnsg 13653 gsumfzreidx 13788 gsumfzsubmcl 13789 gsumfzmptfidmadd 13790 gsumfzconst 13792 gsumfzmhm 13794 fnmgp 13799 mgpvalg 13800 mgpplusgg 13801 mgpex 13802 mgpbasg 13803 mgpscag 13804 mgptsetg 13805 mgpdsg 13807 mgpress 13808 isrng 13811 issrg 13842 isring 13877 opprvalg 13946 opprmulfvalg 13947 opprex 13950 opprsllem 13951 subrngintm 14089 islmod 14168 scaffvalg 14183 scafvalg 14184 scaffng 14186 rmodislmodlem 14227 rmodislmod 14228 lsssn0 14247 lss1d 14260 lssintclm 14261 ellspsn 14294 sraval 14314 sralemg 14315 srascag 14319 sravscag 14320 sraipg 14321 sraex 14323 crngridl 14407 znbaslemnn 14516 iedgvalg 15731 iedgex 15733 edgvalg 15771 edgstruct 15775 |
| Copyright terms: Public domain | W3C validator |