ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotex Unicode version

Theorem slotex 12177
Description: Existence of slot value. A corollary of slotslfn 12176. (Contributed by Jim Kingdon, 12-Feb-2023.)
Hypothesis
Ref Expression
slotslfn.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
Assertion
Ref Expression
slotex  |-  ( A  e.  V  ->  ( E `  A )  e.  _V )

Proof of Theorem slotex
StepHypRef Expression
1 slotslfn.e . . 3  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
21slotslfn 12176 . 2  |-  E  Fn  _V
3 elex 2723 . 2  |-  ( A  e.  V  ->  A  e.  _V )
4 funfvex 5482 . . 3  |-  ( ( Fun  E  /\  A  e.  dom  E )  -> 
( E `  A
)  e.  _V )
54funfni 5267 . 2  |-  ( ( E  Fn  _V  /\  A  e.  _V )  ->  ( E `  A
)  e.  _V )
62, 3, 5sylancr 411 1  |-  ( A  e.  V  ->  ( E `  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   _Vcvv 2712    Fn wfn 5162   ` cfv 5167   NNcn 8816   ndxcnx 12147  Slot cslot 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-iota 5132  df-fun 5169  df-fn 5170  df-fv 5175  df-slot 12154
This theorem is referenced by:  topnfn  12316  topnvalg  12323  topnidg  12324
  Copyright terms: Public domain W3C validator