ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiprc Unicode version

Theorem fiprc 6709
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
Assertion
Ref Expression
fiprc  |-  Fin  e/  _V

Proof of Theorem fiprc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnex 4369 . 2  |-  { x  |  E. y  x  =  { y } }  e/  _V
2 vex 2689 . . . . . . . . 9  |-  y  e. 
_V
3 snfig 6708 . . . . . . . . 9  |-  ( y  e.  _V  ->  { y }  e.  Fin )
42, 3ax-mp 5 . . . . . . . 8  |-  { y }  e.  Fin
5 eleq1 2202 . . . . . . . 8  |-  ( x  =  { y }  ->  ( x  e. 
Fin 
<->  { y }  e.  Fin ) )
64, 5mpbiri 167 . . . . . . 7  |-  ( x  =  { y }  ->  x  e.  Fin )
76exlimiv 1577 . . . . . 6  |-  ( E. y  x  =  {
y }  ->  x  e.  Fin )
87abssi 3172 . . . . 5  |-  { x  |  E. y  x  =  { y } }  C_ 
Fin
9 ssexg 4067 . . . . 5  |-  ( ( { x  |  E. y  x  =  {
y } }  C_  Fin  /\  Fin  e.  _V )  ->  { x  |  E. y  x  =  { y } }  e.  _V )
108, 9mpan 420 . . . 4  |-  ( Fin 
e.  _V  ->  { x  |  E. y  x  =  { y } }  e.  _V )
1110con3i 621 . . 3  |-  ( -. 
{ x  |  E. y  x  =  {
y } }  e.  _V  ->  -.  Fin  e.  _V )
12 df-nel 2404 . . 3  |-  ( { x  |  E. y  x  =  { y } }  e/  _V  <->  -.  { x  |  E. y  x  =  { y } }  e.  _V )
13 df-nel 2404 . . 3  |-  ( Fin 
e/  _V  <->  -.  Fin  e.  _V )
1411, 12, 133imtr4i 200 . 2  |-  ( { x  |  E. y  x  =  { y } }  e/  _V  ->  Fin 
e/  _V )
151, 14ax-mp 5 1  |-  Fin  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2125    e/ wnel 2403   _Vcvv 2686    C_ wss 3071   {csn 3527   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-nel 2404  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-1o 6313  df-en 6635  df-fin 6637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator