ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiprc Unicode version

Theorem fiprc 6931
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
Assertion
Ref Expression
fiprc  |-  Fin  e/  _V

Proof of Theorem fiprc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnex 4513 . 2  |-  { x  |  E. y  x  =  { y } }  e/  _V
2 vex 2779 . . . . . . . . 9  |-  y  e. 
_V
3 snfig 6930 . . . . . . . . 9  |-  ( y  e.  _V  ->  { y }  e.  Fin )
42, 3ax-mp 5 . . . . . . . 8  |-  { y }  e.  Fin
5 eleq1 2270 . . . . . . . 8  |-  ( x  =  { y }  ->  ( x  e. 
Fin 
<->  { y }  e.  Fin ) )
64, 5mpbiri 168 . . . . . . 7  |-  ( x  =  { y }  ->  x  e.  Fin )
76exlimiv 1622 . . . . . 6  |-  ( E. y  x  =  {
y }  ->  x  e.  Fin )
87abssi 3276 . . . . 5  |-  { x  |  E. y  x  =  { y } }  C_ 
Fin
9 ssexg 4199 . . . . 5  |-  ( ( { x  |  E. y  x  =  {
y } }  C_  Fin  /\  Fin  e.  _V )  ->  { x  |  E. y  x  =  { y } }  e.  _V )
108, 9mpan 424 . . . 4  |-  ( Fin 
e.  _V  ->  { x  |  E. y  x  =  { y } }  e.  _V )
1110con3i 633 . . 3  |-  ( -. 
{ x  |  E. y  x  =  {
y } }  e.  _V  ->  -.  Fin  e.  _V )
12 df-nel 2474 . . 3  |-  ( { x  |  E. y  x  =  { y } }  e/  _V  <->  -.  { x  |  E. y  x  =  { y } }  e.  _V )
13 df-nel 2474 . . 3  |-  ( Fin 
e/  _V  <->  -.  Fin  e.  _V )
1411, 12, 133imtr4i 201 . 2  |-  ( { x  |  E. y  x  =  { y } }  e/  _V  ->  Fin 
e/  _V )
151, 14ax-mp 5 1  |-  Fin  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193    e/ wnel 2473   _Vcvv 2776    C_ wss 3174   {csn 3643   Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-nel 2474  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-1o 6525  df-en 6851  df-fin 6853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator