ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submrcl Unicode version

Theorem submrcl 13499
Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
submrcl  |-  ( S  e.  (SubMnd `  M
)  ->  M  e.  Mnd )

Proof of Theorem submrcl
Dummy variables  t  x  y  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 13488 . 2  |- SubMnd  =  ( s  e.  Mnd  |->  { t  e.  ~P ( Base `  s )  |  ( ( 0g `  s )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  s ) y )  e.  t ) } )
21mptrcl 5716 1  |-  ( S  e.  (SubMnd `  M
)  ->  M  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   A.wral 2508   {crab 2512   ~Pcpw 3649   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284   Mndcmnd 13444  SubMndcsubmnd 13486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fv 5325  df-submnd 13488
This theorem is referenced by:  submss  13504  subm0cl  13506  submcl  13507  submmnd  13508  submbas  13509  subm0  13510  subsubm  13511  insubm  13513  resmhm  13515  resmhm2  13516  resmhm2b  13517  gsumsubm  13522  gsumwsubmcl  13524  submmulgcl  13697  submmulg  13698
  Copyright terms: Public domain W3C validator