Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > submmulgcl | Unicode version |
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
submmulgcl.t | .g |
Ref | Expression |
---|---|
submmulgcl | SubMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2171 | . 2 | |
2 | submmulgcl.t | . 2 .g | |
3 | eqid 2171 | . 2 | |
4 | submrcl 12716 | . 2 SubMnd | |
5 | 1 | submss 12720 | . 2 SubMnd |
6 | 3 | submcl 12723 | . 2 SubMnd |
7 | eqid 2171 | . 2 | |
8 | 7 | subm0cl 12722 | . 2 SubMnd |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mulgnn0subcl 12847 | 1 SubMnd |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 974 wceq 1349 wcel 2142 cfv 5200 (class class class)co 5857 cn0 9139 cbs 12420 cplusg 12484 c0g 12618 cmnd 12674 SubMndcsubmnd 12704 .gcmg 12834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-nul 4116 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-iinf 4573 ax-cnex 7869 ax-resscn 7870 ax-1cn 7871 ax-1re 7872 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-addcom 7878 ax-addass 7880 ax-distr 7882 ax-i2m1 7883 ax-0lt1 7884 ax-0id 7886 ax-rnegex 7887 ax-cnre 7889 ax-pre-ltirr 7890 ax-pre-ltwlin 7891 ax-pre-lttrn 7892 ax-pre-ltadd 7894 |
This theorem depends on definitions: df-bi 116 df-dc 831 df-3or 975 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-nel 2437 df-ral 2454 df-rex 2455 df-reu 2456 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-nul 3416 df-if 3528 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-tr 4089 df-id 4279 df-iord 4352 df-on 4354 df-ilim 4355 df-suc 4357 df-iom 4576 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1st 6123 df-2nd 6124 df-recs 6288 df-frec 6374 df-pnf 7960 df-mnf 7961 df-xr 7962 df-ltxr 7963 df-le 7964 df-sub 8096 df-neg 8097 df-inn 8883 df-2 8941 df-n0 9140 df-z 9217 df-uz 9492 df-seqfrec 10406 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-submnd 12706 df-minusg 12734 df-mulg 12835 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |