ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submrcl GIF version

Theorem submrcl 13512
Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
submrcl (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)

Proof of Theorem submrcl
Dummy variables 𝑡 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 13501 . 2 SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
21mptrcl 5719 1 (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wral 2508  {crab 2512  𝒫 cpw 3649  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  0gc0g 13297  Mndcmnd 13457  SubMndcsubmnd 13499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fv 5326  df-submnd 13501
This theorem is referenced by:  submss  13517  subm0cl  13519  submcl  13520  submmnd  13521  submbas  13522  subm0  13523  subsubm  13524  insubm  13526  resmhm  13528  resmhm2  13529  resmhm2b  13530  gsumsubm  13535  gsumwsubmcl  13537  submmulgcl  13710  submmulg  13711
  Copyright terms: Public domain W3C validator