ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subm0cl Unicode version

Theorem subm0cl 13281
Description: Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
subm0cl.z  |-  .0.  =  ( 0g `  M )
Assertion
Ref Expression
subm0cl  |-  ( S  e.  (SubMnd `  M
)  ->  .0.  e.  S )

Proof of Theorem subm0cl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 13274 . . . 4  |-  ( S  e.  (SubMnd `  M
)  ->  M  e.  Mnd )
2 eqid 2204 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
3 subm0cl.z . . . . 5  |-  .0.  =  ( 0g `  M )
4 eqid 2204 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
52, 3, 4issubm 13275 . . . 4  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
61, 5syl 14 . . 3  |-  ( S  e.  (SubMnd `  M
)  ->  ( S  e.  (SubMnd `  M )  <->  ( S  C_  ( Base `  M )  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
76ibi 176 . 2  |-  ( S  e.  (SubMnd `  M
)  ->  ( S  C_  ( Base `  M
)  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S
) )
87simp2d 1012 1  |-  ( S  e.  (SubMnd `  M
)  ->  .0.  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483    C_ wss 3165   ` cfv 5270  (class class class)co 5943   Basecbs 12803   +g cplusg 12880   0gc0g 13059   Mndcmnd 13219  SubMndcsubmnd 13261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-inn 9036  df-ndx 12806  df-slot 12807  df-base 12809  df-submnd 13263
This theorem is referenced by:  subm0  13285  subsubm  13286  resmhm  13290  mhmima  13294  gsumsubm  13297  gsumwsubmcl  13299  submmulgcl  13472  issubg3  13499  gsumfzsubmcl  13645
  Copyright terms: Public domain W3C validator