ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subm0cl Unicode version

Theorem subm0cl 12704
Description: Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
subm0cl.z  |-  .0.  =  ( 0g `  M )
Assertion
Ref Expression
subm0cl  |-  ( S  e.  (SubMnd `  M
)  ->  .0.  e.  S )

Proof of Theorem subm0cl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 12698 . . . 4  |-  ( S  e.  (SubMnd `  M
)  ->  M  e.  Mnd )
2 eqid 2171 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
3 subm0cl.z . . . . 5  |-  .0.  =  ( 0g `  M )
4 eqid 2171 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
52, 3, 4issubm 12699 . . . 4  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
61, 5syl 14 . . 3  |-  ( S  e.  (SubMnd `  M
)  ->  ( S  e.  (SubMnd `  M )  <->  ( S  C_  ( Base `  M )  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
76ibi 175 . 2  |-  ( S  e.  (SubMnd `  M
)  ->  ( S  C_  ( Base `  M
)  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S
) )
87simp2d 1006 1  |-  ( S  e.  (SubMnd `  M
)  ->  .0.  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 974    = wceq 1349    e. wcel 2142   A.wral 2449    C_ wss 3122   ` cfv 5200  (class class class)co 5857   Basecbs 12420   +g cplusg 12484   0gc0g 12600   Mndcmnd 12656  SubMndcsubmnd 12686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-sep 4108  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-cnex 7869  ax-resscn 7870  ax-1re 7872  ax-addrcl 7875
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ral 2454  df-rex 2455  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-br 3991  df-opab 4052  df-mpt 4053  df-id 4279  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-fv 5208  df-ov 5860  df-inn 8883  df-ndx 12423  df-slot 12424  df-base 12426  df-submnd 12688
This theorem is referenced by:  mhmima  12710  submmulgcl  12857
  Copyright terms: Public domain W3C validator