ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subm0cl Unicode version

Theorem subm0cl 13310
Description: Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
subm0cl.z  |-  .0.  =  ( 0g `  M )
Assertion
Ref Expression
subm0cl  |-  ( S  e.  (SubMnd `  M
)  ->  .0.  e.  S )

Proof of Theorem subm0cl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 13303 . . . 4  |-  ( S  e.  (SubMnd `  M
)  ->  M  e.  Mnd )
2 eqid 2205 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
3 subm0cl.z . . . . 5  |-  .0.  =  ( 0g `  M )
4 eqid 2205 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
52, 3, 4issubm 13304 . . . 4  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
61, 5syl 14 . . 3  |-  ( S  e.  (SubMnd `  M
)  ->  ( S  e.  (SubMnd `  M )  <->  ( S  C_  ( Base `  M )  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
76ibi 176 . 2  |-  ( S  e.  (SubMnd `  M
)  ->  ( S  C_  ( Base `  M
)  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S
) )
87simp2d 1013 1  |-  ( S  e.  (SubMnd `  M
)  ->  .0.  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088   Mndcmnd 13248  SubMndcsubmnd 13290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-submnd 13292
This theorem is referenced by:  subm0  13314  subsubm  13315  resmhm  13319  mhmima  13323  gsumsubm  13326  gsumwsubmcl  13328  submmulgcl  13501  issubg3  13528  gsumfzsubmcl  13674
  Copyright terms: Public domain W3C validator