ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcl Unicode version

Theorem zsupcl 11902
Description: Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at  M (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after  M, and (c) be false after  j (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcl.m  |-  ( ph  ->  M  e.  ZZ )
zsupcl.sbm  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
zsupcl.mtru  |-  ( ph  ->  ch )
zsupcl.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
zsupcl.bnd  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
Assertion
Ref Expression
zsupcl  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )
)
Distinct variable groups:    ph, j, n    ps, j    ch, j, n   
j, M, n
Allowed substitution hint:    ps( n)

Proof of Theorem zsupcl
Dummy variables  x  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcl.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
21zred 9334 . . 3  |-  ( ph  ->  M  e.  RR )
3 lttri3 7999 . . . . 5  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u  =  v  <-> 
( -.  u  < 
v  /\  -.  v  <  u ) ) )
43adantl 275 . . . 4  |-  ( (
ph  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( u  =  v  <-> 
( -.  u  < 
v  /\  -.  v  <  u ) ) )
5 zssre 9219 . . . . 5  |-  ZZ  C_  RR
6 zsupcl.sbm . . . . . 6  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
7 zsupcl.mtru . . . . . 6  |-  ( ph  ->  ch )
8 zsupcl.dc . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
9 zsupcl.bnd . . . . . 6  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
101, 6, 7, 8, 9zsupcllemex 11901 . . . . 5  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
11 ssrexv 3212 . . . . 5  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
)  ->  E. x  e.  RR  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
125, 10, 11mpsyl 65 . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
134, 12supclti 6975 . . 3  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  RR )
146elrab 2886 . . . . 5  |-  ( M  e.  { n  e.  ZZ  |  ps }  <->  ( M  e.  ZZ  /\  ch ) )
151, 7, 14sylanbrc 415 . . . 4  |-  ( ph  ->  M  e.  { n  e.  ZZ  |  ps }
)
164, 12supubti 6976 . . . 4  |-  ( ph  ->  ( M  e.  {
n  e.  ZZ  |  ps }  ->  -.  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  <  M
) )
1715, 16mpd 13 . . 3  |-  ( ph  ->  -.  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  <  M )
182, 13, 17nltled 8040 . 2  |-  ( ph  ->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  ) )
195a1i 9 . . . 4  |-  ( ph  ->  ZZ  C_  RR )
204, 10, 19supelti 6979 . . 3  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ZZ )
21 eluz 9500 . . 3  |-  ( ( M  e.  ZZ  /\  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ZZ )  ->  ( sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )  <->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )
) )
221, 20, 21syl2anc 409 . 2  |-  ( ph  ->  ( sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )  <->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )
) )
2318, 22mpbird 166 1  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452    C_ wss 3121   class class class wbr 3989   ` cfv 5198   supcsup 6959   RRcr 7773    < clt 7954    <_ cle 7955   ZZcz 9212   ZZ>=cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099
This theorem is referenced by:  suprzubdc  11907  gcdsupcl  11913
  Copyright terms: Public domain W3C validator