ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcl Unicode version

Theorem zsupcl 11880
Description: Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at  M (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after  M, and (c) be false after  j (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcl.m  |-  ( ph  ->  M  e.  ZZ )
zsupcl.sbm  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
zsupcl.mtru  |-  ( ph  ->  ch )
zsupcl.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
zsupcl.bnd  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
Assertion
Ref Expression
zsupcl  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )
)
Distinct variable groups:    ph, j, n    ps, j    ch, j, n   
j, M, n
Allowed substitution hint:    ps( n)

Proof of Theorem zsupcl
Dummy variables  x  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcl.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
21zred 9313 . . 3  |-  ( ph  ->  M  e.  RR )
3 lttri3 7978 . . . . 5  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u  =  v  <-> 
( -.  u  < 
v  /\  -.  v  <  u ) ) )
43adantl 275 . . . 4  |-  ( (
ph  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( u  =  v  <-> 
( -.  u  < 
v  /\  -.  v  <  u ) ) )
5 zssre 9198 . . . . 5  |-  ZZ  C_  RR
6 zsupcl.sbm . . . . . 6  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
7 zsupcl.mtru . . . . . 6  |-  ( ph  ->  ch )
8 zsupcl.dc . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
9 zsupcl.bnd . . . . . 6  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
101, 6, 7, 8, 9zsupcllemex 11879 . . . . 5  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
11 ssrexv 3207 . . . . 5  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
)  ->  E. x  e.  RR  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
125, 10, 11mpsyl 65 . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
134, 12supclti 6963 . . 3  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  RR )
146elrab 2882 . . . . 5  |-  ( M  e.  { n  e.  ZZ  |  ps }  <->  ( M  e.  ZZ  /\  ch ) )
151, 7, 14sylanbrc 414 . . . 4  |-  ( ph  ->  M  e.  { n  e.  ZZ  |  ps }
)
164, 12supubti 6964 . . . 4  |-  ( ph  ->  ( M  e.  {
n  e.  ZZ  |  ps }  ->  -.  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  <  M
) )
1715, 16mpd 13 . . 3  |-  ( ph  ->  -.  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  <  M )
182, 13, 17nltled 8019 . 2  |-  ( ph  ->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  ) )
195a1i 9 . . . 4  |-  ( ph  ->  ZZ  C_  RR )
204, 10, 19supelti 6967 . . 3  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ZZ )
21 eluz 9479 . . 3  |-  ( ( M  e.  ZZ  /\  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ZZ )  ->  ( sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )  <->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )
) )
221, 20, 21syl2anc 409 . 2  |-  ( ph  ->  ( sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )  <->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )
) )
2318, 22mpbird 166 1  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   class class class wbr 3982   ` cfv 5188   supcsup 6947   RRcr 7752    < clt 7933    <_ cle 7934   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by:  suprzubdc  11885  gcdsupcl  11891
  Copyright terms: Public domain W3C validator