ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcl Unicode version

Theorem zsupcl 11865
Description: Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at  M (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after  M, and (c) be false after  j (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcl.m  |-  ( ph  ->  M  e.  ZZ )
zsupcl.sbm  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
zsupcl.mtru  |-  ( ph  ->  ch )
zsupcl.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
zsupcl.bnd  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
Assertion
Ref Expression
zsupcl  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )
)
Distinct variable groups:    ph, j, n    ps, j    ch, j, n   
j, M, n
Allowed substitution hint:    ps( n)

Proof of Theorem zsupcl
Dummy variables  x  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcl.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
21zred 9304 . . 3  |-  ( ph  ->  M  e.  RR )
3 lttri3 7969 . . . . 5  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u  =  v  <-> 
( -.  u  < 
v  /\  -.  v  <  u ) ) )
43adantl 275 . . . 4  |-  ( (
ph  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( u  =  v  <-> 
( -.  u  < 
v  /\  -.  v  <  u ) ) )
5 zssre 9189 . . . . 5  |-  ZZ  C_  RR
6 zsupcl.sbm . . . . . 6  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
7 zsupcl.mtru . . . . . 6  |-  ( ph  ->  ch )
8 zsupcl.dc . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
9 zsupcl.bnd . . . . . 6  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
101, 6, 7, 8, 9zsupcllemex 11864 . . . . 5  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
11 ssrexv 3202 . . . . 5  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
)  ->  E. x  e.  RR  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
125, 10, 11mpsyl 65 . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
134, 12supclti 6954 . . 3  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  RR )
146elrab 2877 . . . . 5  |-  ( M  e.  { n  e.  ZZ  |  ps }  <->  ( M  e.  ZZ  /\  ch ) )
151, 7, 14sylanbrc 414 . . . 4  |-  ( ph  ->  M  e.  { n  e.  ZZ  |  ps }
)
164, 12supubti 6955 . . . 4  |-  ( ph  ->  ( M  e.  {
n  e.  ZZ  |  ps }  ->  -.  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  <  M
) )
1715, 16mpd 13 . . 3  |-  ( ph  ->  -.  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  <  M )
182, 13, 17nltled 8010 . 2  |-  ( ph  ->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  ) )
195a1i 9 . . . 4  |-  ( ph  ->  ZZ  C_  RR )
204, 10, 19supelti 6958 . . 3  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ZZ )
21 eluz 9470 . . 3  |-  ( ( M  e.  ZZ  /\  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ZZ )  ->  ( sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )  <->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )
) )
221, 20, 21syl2anc 409 . 2  |-  ( ph  ->  ( sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )  <->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )
) )
2318, 22mpbird 166 1  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   {crab 2446    C_ wss 3111   class class class wbr 3976   ` cfv 5182   supcsup 6938   RRcr 7743    < clt 7924    <_ cle 7925   ZZcz 9182   ZZ>=cuz 9457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-sup 6940  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-fz 9936  df-fzo 10068
This theorem is referenced by:  suprzubdc  11870  gcdsupcl  11876
  Copyright terms: Public domain W3C validator