ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcl Unicode version

Theorem zsupcl 10451
Description: Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at  M (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after  M, and (c) be false after  j (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcl.m  |-  ( ph  ->  M  e.  ZZ )
zsupcl.sbm  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
zsupcl.mtru  |-  ( ph  ->  ch )
zsupcl.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
zsupcl.bnd  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
Assertion
Ref Expression
zsupcl  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )
)
Distinct variable groups:    ph, j, n    ps, j    ch, j, n   
j, M, n
Allowed substitution hint:    ps( n)

Proof of Theorem zsupcl
Dummy variables  x  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcl.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
21zred 9569 . . 3  |-  ( ph  ->  M  e.  RR )
3 lttri3 8226 . . . . 5  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u  =  v  <-> 
( -.  u  < 
v  /\  -.  v  <  u ) ) )
43adantl 277 . . . 4  |-  ( (
ph  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( u  =  v  <-> 
( -.  u  < 
v  /\  -.  v  <  u ) ) )
5 zssre 9453 . . . . 5  |-  ZZ  C_  RR
6 zsupcl.sbm . . . . . 6  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
7 zsupcl.mtru . . . . . 6  |-  ( ph  ->  ch )
8 zsupcl.dc . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
9 zsupcl.bnd . . . . . 6  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
101, 6, 7, 8, 9zsupcllemex 10450 . . . . 5  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
11 ssrexv 3289 . . . . 5  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
)  ->  E. x  e.  RR  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
125, 10, 11mpsyl 65 . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
134, 12supclti 7165 . . 3  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  RR )
146elrab 2959 . . . . 5  |-  ( M  e.  { n  e.  ZZ  |  ps }  <->  ( M  e.  ZZ  /\  ch ) )
151, 7, 14sylanbrc 417 . . . 4  |-  ( ph  ->  M  e.  { n  e.  ZZ  |  ps }
)
164, 12supubti 7166 . . . 4  |-  ( ph  ->  ( M  e.  {
n  e.  ZZ  |  ps }  ->  -.  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  <  M
) )
1715, 16mpd 13 . . 3  |-  ( ph  ->  -.  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  <  M )
182, 13, 17nltled 8267 . 2  |-  ( ph  ->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  ) )
195a1i 9 . . . 4  |-  ( ph  ->  ZZ  C_  RR )
204, 10, 19supelti 7169 . . 3  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ZZ )
21 eluz 9735 . . 3  |-  ( ( M  e.  ZZ  /\  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ZZ )  ->  ( sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )  <->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )
) )
221, 20, 21syl2anc 411 . 2  |-  ( ph  ->  ( sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )  <->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )
) )
2318, 22mpbird 167 1  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512    C_ wss 3197   class class class wbr 4083   ` cfv 5318   supcsup 7149   RRcr 7998    < clt 8181    <_ cle 8182   ZZcz 9446   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339
This theorem is referenced by:  suprzubdc  10456  gcdsupcl  12479
  Copyright terms: Public domain W3C validator