| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpr | Unicode version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iltp 7554 |
. 2
| |
| 2 | opabssxp 4738 |
. 2
| |
| 3 | 1, 2 | eqsstri 3216 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-opab 4096 df-xp 4670 df-iltp 7554 |
| This theorem is referenced by: ltprordil 7673 ltexprlemm 7684 ltexprlemopl 7685 ltexprlemlol 7686 ltexprlemopu 7687 ltexprlemupu 7688 ltexprlemdisj 7690 ltexprlemloc 7691 ltexprlemfl 7693 ltexprlemrl 7694 ltexprlemfu 7695 ltexprlemru 7696 ltexpri 7697 lteupri 7701 ltaprlem 7702 prplnqu 7704 caucvgprprlemk 7767 caucvgprprlemnkltj 7773 caucvgprprlemnkeqj 7774 caucvgprprlemnjltk 7775 caucvgprprlemnbj 7777 caucvgprprlemml 7778 caucvgprprlemlol 7782 caucvgprprlemupu 7784 suplocexprlemss 7799 suplocexprlemlub 7808 gt0srpr 7832 lttrsr 7846 ltposr 7847 archsr 7866 |
| Copyright terms: Public domain | W3C validator |