| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpr | Unicode version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iltp 7618 |
. 2
| |
| 2 | opabssxp 4767 |
. 2
| |
| 3 | 1, 2 | eqsstri 3233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 df-opab 4122 df-xp 4699 df-iltp 7618 |
| This theorem is referenced by: ltprordil 7737 ltexprlemm 7748 ltexprlemopl 7749 ltexprlemlol 7750 ltexprlemopu 7751 ltexprlemupu 7752 ltexprlemdisj 7754 ltexprlemloc 7755 ltexprlemfl 7757 ltexprlemrl 7758 ltexprlemfu 7759 ltexprlemru 7760 ltexpri 7761 lteupri 7765 ltaprlem 7766 prplnqu 7768 caucvgprprlemk 7831 caucvgprprlemnkltj 7837 caucvgprprlemnkeqj 7838 caucvgprprlemnjltk 7839 caucvgprprlemnbj 7841 caucvgprprlemml 7842 caucvgprprlemlol 7846 caucvgprprlemupu 7848 suplocexprlemss 7863 suplocexprlemlub 7872 gt0srpr 7896 lttrsr 7910 ltposr 7911 archsr 7930 |
| Copyright terms: Public domain | W3C validator |