| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpr | Unicode version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iltp 7657 |
. 2
| |
| 2 | opabssxp 4793 |
. 2
| |
| 3 | 1, 2 | eqsstri 3256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-opab 4146 df-xp 4725 df-iltp 7657 |
| This theorem is referenced by: ltprordil 7776 ltexprlemm 7787 ltexprlemopl 7788 ltexprlemlol 7789 ltexprlemopu 7790 ltexprlemupu 7791 ltexprlemdisj 7793 ltexprlemloc 7794 ltexprlemfl 7796 ltexprlemrl 7797 ltexprlemfu 7798 ltexprlemru 7799 ltexpri 7800 lteupri 7804 ltaprlem 7805 prplnqu 7807 caucvgprprlemk 7870 caucvgprprlemnkltj 7876 caucvgprprlemnkeqj 7877 caucvgprprlemnjltk 7878 caucvgprprlemnbj 7880 caucvgprprlemml 7881 caucvgprprlemlol 7885 caucvgprprlemupu 7887 suplocexprlemss 7902 suplocexprlemlub 7911 gt0srpr 7935 lttrsr 7949 ltposr 7950 archsr 7969 |
| Copyright terms: Public domain | W3C validator |