| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpr | Unicode version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iltp 7585 |
. 2
| |
| 2 | opabssxp 4750 |
. 2
| |
| 3 | 1, 2 | eqsstri 3225 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-opab 4107 df-xp 4682 df-iltp 7585 |
| This theorem is referenced by: ltprordil 7704 ltexprlemm 7715 ltexprlemopl 7716 ltexprlemlol 7717 ltexprlemopu 7718 ltexprlemupu 7719 ltexprlemdisj 7721 ltexprlemloc 7722 ltexprlemfl 7724 ltexprlemrl 7725 ltexprlemfu 7726 ltexprlemru 7727 ltexpri 7728 lteupri 7732 ltaprlem 7733 prplnqu 7735 caucvgprprlemk 7798 caucvgprprlemnkltj 7804 caucvgprprlemnkeqj 7805 caucvgprprlemnjltk 7806 caucvgprprlemnbj 7808 caucvgprprlemml 7809 caucvgprprlemlol 7813 caucvgprprlemupu 7815 suplocexprlemss 7830 suplocexprlemlub 7839 gt0srpr 7863 lttrsr 7877 ltposr 7878 archsr 7897 |
| Copyright terms: Public domain | W3C validator |