| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpr | Unicode version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iltp 7537 |
. 2
| |
| 2 | opabssxp 4737 |
. 2
| |
| 3 | 1, 2 | eqsstri 3215 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-opab 4095 df-xp 4669 df-iltp 7537 |
| This theorem is referenced by: ltprordil 7656 ltexprlemm 7667 ltexprlemopl 7668 ltexprlemlol 7669 ltexprlemopu 7670 ltexprlemupu 7671 ltexprlemdisj 7673 ltexprlemloc 7674 ltexprlemfl 7676 ltexprlemrl 7677 ltexprlemfu 7678 ltexprlemru 7679 ltexpri 7680 lteupri 7684 ltaprlem 7685 prplnqu 7687 caucvgprprlemk 7750 caucvgprprlemnkltj 7756 caucvgprprlemnkeqj 7757 caucvgprprlemnjltk 7758 caucvgprprlemnbj 7760 caucvgprprlemml 7761 caucvgprprlemlol 7765 caucvgprprlemupu 7767 suplocexprlemss 7782 suplocexprlemlub 7791 gt0srpr 7815 lttrsr 7829 ltposr 7830 archsr 7849 |
| Copyright terms: Public domain | W3C validator |