![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelpr | Unicode version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
Ref | Expression |
---|---|
ltrelpr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iltp 7029 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | opabssxp 4512 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqsstri 3056 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-in 3005 df-ss 3012 df-opab 3900 df-xp 4444 df-iltp 7029 |
This theorem is referenced by: ltprordil 7148 ltexprlemm 7159 ltexprlemopl 7160 ltexprlemlol 7161 ltexprlemopu 7162 ltexprlemupu 7163 ltexprlemdisj 7165 ltexprlemloc 7166 ltexprlemfl 7168 ltexprlemrl 7169 ltexprlemfu 7170 ltexprlemru 7171 ltexpri 7172 lteupri 7176 ltaprlem 7177 prplnqu 7179 caucvgprprlemk 7242 caucvgprprlemnkltj 7248 caucvgprprlemnkeqj 7249 caucvgprprlemnjltk 7250 caucvgprprlemnbj 7252 caucvgprprlemml 7253 caucvgprprlemlol 7257 caucvgprprlemupu 7259 gt0srpr 7294 lttrsr 7308 ltposr 7309 archsr 7327 |
Copyright terms: Public domain | W3C validator |