![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6req | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
syl6req.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6req.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6req |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6req.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6req.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl6eq 2137 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | eqcomd 2094 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 |
This theorem is referenced by: syl6reqr 2140 elxp4 4931 elxp5 4932 fo1stresm 5946 fo2ndresm 5947 eloprabi 5980 fo2ndf 6006 xpsnen 6591 xpassen 6600 ac6sfi 6668 undifdc 6688 ine0 7926 nn0n0n1ge2 8871 fzval2 9481 fseq1p1m1 9562 fsum2dlemstep 10882 modfsummodlemstep 10905 ef4p 11038 sin01bnd 11102 odd2np1 11205 sqpweven 11485 2sqpwodd 11486 |
Copyright terms: Public domain | W3C validator |