ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin01bnd Unicode version

Theorem sin01bnd 11109
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )

Proof of Theorem sin01bnd
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7595 . . . . . . . . 9  |-  0  e.  RR*
2 1re 7548 . . . . . . . . 9  |-  1  e.  RR
3 elioc2 9415 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 418 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 959 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 eqid 2089 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) )
76resin4p 11070 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
85, 7syl 14 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
98eqcomd 2094 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )  =  ( sin `  A
) )
105resincld 11075 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  RR )
1110recnd 7577 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  CC )
12 3nn0 8752 . . . . . . . . . 10  |-  3  e.  NN0
13 reexpcl 10033 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
145, 12, 13sylancl 405 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  RR )
15 6nn 8642 . . . . . . . . 9  |-  6  e.  NN
16 nndivre 8519 . . . . . . . . 9  |-  ( ( ( A ^ 3 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
3 )  /  6
)  e.  RR )
1714, 15, 16sylancl 405 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  e.  RR )
185, 17resubcld 7920 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  RR )
1918recnd 7577 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  CC )
20 ax-icn 7501 . . . . . . . . . 10  |-  _i  e.  CC
215recnd 7577 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
22 mulcl 7530 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
2320, 21, 22sylancr 406 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
24 4nn0 8753 . . . . . . . . 9  |-  4  e.  NN0
256eftlcl 11039 . . . . . . . . 9  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
2623, 24, 25sylancl 405 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2726imcld 10434 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  RR )
2827recnd 7577 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  CC )
2911, 19, 28subaddd 7872 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  =  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) )  <-> 
( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) )  =  ( sin `  A
) ) )
309, 29mpbird 166 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  =  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )
3130fveq2d 5322 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( sin `  A )  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  =  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) ) )
3228abscld 10675 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  e.  RR )
3326abscld 10675 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  e.  RR )
34 absimle 10578 . . . . 5  |-  ( sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
3526, 34syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
36 reexpcl 10033 . . . . . . 7  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
375, 24, 36sylancl 405 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
38 nndivre 8519 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
3937, 15, 38sylancl 405 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
406ef01bndlem 11108 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 4 )  /  6 ) )
4112a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  3  e.  NN0 )
42 4z 8841 . . . . . . . . 9  |-  4  e.  ZZ
43 3re 8557 . . . . . . . . . 10  |-  3  e.  RR
44 4re 8560 . . . . . . . . . 10  |-  4  e.  RR
45 3lt4 8649 . . . . . . . . . 10  |-  3  <  4
4643, 44, 45ltleii 7648 . . . . . . . . 9  |-  3  <_  4
47 3z 8840 . . . . . . . . . 10  |-  3  e.  ZZ
4847eluz1i 9087 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
4942, 46, 48mpbir2an 889 . . . . . . . 8  |-  4  e.  ( ZZ>= `  3 )
5049a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  ( ZZ>= `  3 )
)
514simp2bi 960 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
52 0re 7549 . . . . . . . . 9  |-  0  e.  RR
53 ltle 7633 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
5452, 5, 53sylancr 406 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
5551, 54mpd 13 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
564simp3bi 961 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
575, 41, 50, 55, 56leexp2rd 10177 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  <_ 
( A ^ 3 ) )
58 6re 8564 . . . . . . . 8  |-  6  e.  RR
5958a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  6  e.  RR )
60 6pos 8584 . . . . . . . 8  |-  0  <  6
6160a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  6 )
62 lediv1 8391 . . . . . . 7  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( A ^ 3 )  e.  RR  /\  (
6  e.  RR  /\  0  <  6 ) )  ->  ( ( A ^ 4 )  <_ 
( A ^ 3 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 3 )  /  6 ) ) )
6337, 14, 59, 61, 62syl112anc 1179 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  <_  ( A ^ 3 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 3 )  /  6 ) ) )
6457, 63mpbid 146 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  <_  ( ( A ^ 3 )  / 
6 ) )
6533, 39, 17, 40, 64ltletrd 7962 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 3 )  /  6 ) )
6632, 33, 17, 35, 65lelttrd 7669 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <  ( ( A ^ 3 )  /  6 ) )
6731, 66eqbrtrd 3871 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( sin `  A )  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 ) )
6810, 18, 17absdifltd 10672 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 )  <->  ( (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  <  ( sin `  A
)  /\  ( sin `  A )  <  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( ( A ^ 3 )  /  6 ) ) ) ) )
6917recnd 7577 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  e.  CC )
7021, 69, 69subsub4d 7885 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( ( A ^ 3 )  / 
6 )  +  ( ( A ^ 3 )  /  6 ) ) ) )
7114recnd 7577 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  CC )
72 3cn 8558 . . . . . . . . . . . . 13  |-  3  e.  CC
73 3ap0 8579 . . . . . . . . . . . . 13  |-  3 #  0
7472, 73pm3.2i 267 . . . . . . . . . . . 12  |-  ( 3  e.  CC  /\  3 #  0 )
75 2cn 8554 . . . . . . . . . . . . 13  |-  2  e.  CC
76 2ap0 8576 . . . . . . . . . . . . 13  |-  2 #  0
7775, 76pm3.2i 267 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2 #  0 )
78 divdivap1 8251 . . . . . . . . . . . 12  |-  ( ( ( A ^ 3 )  e.  CC  /\  ( 3  e.  CC  /\  3 #  0 )  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( ( A ^ 3 )  /  3 )  / 
2 )  =  ( ( A ^ 3 )  /  ( 3  x.  2 ) ) )
7974, 77, 78mp3an23 1266 . . . . . . . . . . 11  |-  ( ( A ^ 3 )  e.  CC  ->  (
( ( A ^
3 )  /  3
)  /  2 )  =  ( ( A ^ 3 )  / 
( 3  x.  2 ) ) )
8071, 79syl 14 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  3
)  /  2 )  =  ( ( A ^ 3 )  / 
( 3  x.  2 ) ) )
81 3t2e6 8633 . . . . . . . . . . 11  |-  ( 3  x.  2 )  =  6
8281oveq2i 5677 . . . . . . . . . 10  |-  ( ( A ^ 3 )  /  ( 3  x.  2 ) )  =  ( ( A ^
3 )  /  6
)
8380, 82syl6req 2138 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  =  ( ( ( A ^ 3 )  /  3 )  / 
2 ) )
8483, 83oveq12d 5684 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  6
)  +  ( ( A ^ 3 )  /  6 ) )  =  ( ( ( ( A ^ 3 )  /  3 )  /  2 )  +  ( ( ( A ^ 3 )  / 
3 )  /  2
) ) )
85 3nn 8639 . . . . . . . . . . 11  |-  3  e.  NN
86 nndivre 8519 . . . . . . . . . . 11  |-  ( ( ( A ^ 3 )  e.  RR  /\  3  e.  NN )  ->  ( ( A ^
3 )  /  3
)  e.  RR )
8714, 85, 86sylancl 405 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
8887recnd 7577 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  CC )
89882halvesd 8722 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( A ^ 3 )  / 
3 )  /  2
)  +  ( ( ( A ^ 3 )  /  3 )  /  2 ) )  =  ( ( A ^ 3 )  / 
3 ) )
9084, 89eqtrd 2121 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  6
)  +  ( ( A ^ 3 )  /  6 ) )  =  ( ( A ^ 3 )  / 
3 ) )
9190oveq2d 5682 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( (
( A ^ 3 )  /  6 )  +  ( ( A ^ 3 )  / 
6 ) ) )  =  ( A  -  ( ( A ^
3 )  /  3
) ) )
9270, 91eqtrd 2121 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( A ^
3 )  /  3
) ) )
9392breq1d 3861 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A  -  ( ( A ^
3 )  /  6
) )  -  (
( A ^ 3 )  /  6 ) )  <  ( sin `  A )  <->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) ) )
9421, 69npcand 7858 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( ( A ^ 3 )  /  6 ) )  =  A )
9594breq2d 3863 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( sin `  A
)  <  ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  +  ( ( A ^
3 )  /  6
) )  <->  ( sin `  A )  <  A
) )
9693, 95anbi12d 458 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  -  ( ( A ^
3 )  /  6
) )  <  ( sin `  A )  /\  ( sin `  A )  <  ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  +  ( ( A ^
3 )  /  6
) ) )  <->  ( ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
)  /\  ( sin `  A )  <  A
) ) )
9768, 96bitrd 187 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 )  <->  ( ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
)  /\  ( sin `  A )  <  A
) ) )
9867, 97mpbid 146 1  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 925    = wceq 1290    e. wcel 1439   class class class wbr 3851    |-> cmpt 3905   ` cfv 5028  (class class class)co 5666   CCcc 7409   RRcr 7410   0cc0 7411   1c1 7412   _ici 7413    + caddc 7414    x. cmul 7416   RR*cxr 7582    < clt 7583    <_ cle 7584    - cmin 7714   # cap 8119    / cdiv 8200   NNcn 8483   2c2 8534   3c3 8535   4c4 8536   6c6 8538   NN0cn0 8734   ZZcz 8811   ZZ>=cuz 9080   (,]cioc 9368   ^cexp 10015   !cfa 10194   Imcim 10336   abscabs 10491   sum_csu 10803   sincsin 10995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-5 8545  df-6 8546  df-7 8547  df-8 8548  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-ioc 9372  df-ico 9373  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-fac 10195  df-ihash 10245  df-shft 10310  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804  df-ef 10999  df-sin 11001
This theorem is referenced by:  sin01gt0  11113
  Copyright terms: Public domain W3C validator