ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin01bnd Unicode version

Theorem sin01bnd 12263
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )

Proof of Theorem sin01bnd
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8189 . . . . . . . . 9  |-  0  e.  RR*
2 1re 8141 . . . . . . . . 9  |-  1  e.  RR
3 elioc2 10128 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 426 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 1036 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 eqid 2229 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) )
76resin4p 12224 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
85, 7syl 14 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
98eqcomd 2235 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )  =  ( sin `  A
) )
105resincld 12229 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  RR )
1110recnd 8171 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  CC )
12 3nn0 9383 . . . . . . . . . 10  |-  3  e.  NN0
13 reexpcl 10773 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
145, 12, 13sylancl 413 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  RR )
15 6nn 9272 . . . . . . . . 9  |-  6  e.  NN
16 nndivre 9142 . . . . . . . . 9  |-  ( ( ( A ^ 3 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
3 )  /  6
)  e.  RR )
1714, 15, 16sylancl 413 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  e.  RR )
185, 17resubcld 8523 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  RR )
1918recnd 8171 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  CC )
20 ax-icn 8090 . . . . . . . . . 10  |-  _i  e.  CC
215recnd 8171 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
22 mulcl 8122 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
2320, 21, 22sylancr 414 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
24 4nn0 9384 . . . . . . . . 9  |-  4  e.  NN0
256eftlcl 12194 . . . . . . . . 9  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
2623, 24, 25sylancl 413 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2726imcld 11445 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  RR )
2827recnd 8171 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  CC )
2911, 19, 28subaddd 8471 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  =  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) )  <-> 
( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) )  =  ( sin `  A
) ) )
309, 29mpbird 167 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  =  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )
3130fveq2d 5630 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( sin `  A )  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  =  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) ) )
3228abscld 11687 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  e.  RR )
3326abscld 11687 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  e.  RR )
34 absimle 11590 . . . . 5  |-  ( sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
3526, 34syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
36 reexpcl 10773 . . . . . . 7  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
375, 24, 36sylancl 413 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
38 nndivre 9142 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
3937, 15, 38sylancl 413 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
406ef01bndlem 12262 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 4 )  /  6 ) )
4112a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  3  e.  NN0 )
42 4z 9472 . . . . . . . . 9  |-  4  e.  ZZ
43 3re 9180 . . . . . . . . . 10  |-  3  e.  RR
44 4re 9183 . . . . . . . . . 10  |-  4  e.  RR
45 3lt4 9279 . . . . . . . . . 10  |-  3  <  4
4643, 44, 45ltleii 8245 . . . . . . . . 9  |-  3  <_  4
47 3z 9471 . . . . . . . . . 10  |-  3  e.  ZZ
4847eluz1i 9725 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
4942, 46, 48mpbir2an 948 . . . . . . . 8  |-  4  e.  ( ZZ>= `  3 )
5049a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  ( ZZ>= `  3 )
)
514simp2bi 1037 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
52 0re 8142 . . . . . . . . 9  |-  0  e.  RR
53 ltle 8230 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
5452, 5, 53sylancr 414 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
5551, 54mpd 13 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
564simp3bi 1038 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
575, 41, 50, 55, 56leexp2rd 10920 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  <_ 
( A ^ 3 ) )
58 6re 9187 . . . . . . . 8  |-  6  e.  RR
5958a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  6  e.  RR )
60 6pos 9207 . . . . . . . 8  |-  0  <  6
6160a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  6 )
62 lediv1 9012 . . . . . . 7  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( A ^ 3 )  e.  RR  /\  (
6  e.  RR  /\  0  <  6 ) )  ->  ( ( A ^ 4 )  <_ 
( A ^ 3 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 3 )  /  6 ) ) )
6337, 14, 59, 61, 62syl112anc 1275 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  <_  ( A ^ 3 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 3 )  /  6 ) ) )
6457, 63mpbid 147 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  <_  ( ( A ^ 3 )  / 
6 ) )
6533, 39, 17, 40, 64ltletrd 8566 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 3 )  /  6 ) )
6632, 33, 17, 35, 65lelttrd 8267 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <  ( ( A ^ 3 )  /  6 ) )
6731, 66eqbrtrd 4104 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( sin `  A )  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 ) )
6810, 18, 17absdifltd 11684 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 )  <->  ( (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  <  ( sin `  A
)  /\  ( sin `  A )  <  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( ( A ^ 3 )  /  6 ) ) ) ) )
6917recnd 8171 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  e.  CC )
7021, 69, 69subsub4d 8484 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( ( A ^ 3 )  / 
6 )  +  ( ( A ^ 3 )  /  6 ) ) ) )
7114recnd 8171 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  CC )
72 3cn 9181 . . . . . . . . . . . . 13  |-  3  e.  CC
73 3ap0 9202 . . . . . . . . . . . . 13  |-  3 #  0
7472, 73pm3.2i 272 . . . . . . . . . . . 12  |-  ( 3  e.  CC  /\  3 #  0 )
75 2cn 9177 . . . . . . . . . . . . 13  |-  2  e.  CC
76 2ap0 9199 . . . . . . . . . . . . 13  |-  2 #  0
7775, 76pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2 #  0 )
78 divdivap1 8866 . . . . . . . . . . . 12  |-  ( ( ( A ^ 3 )  e.  CC  /\  ( 3  e.  CC  /\  3 #  0 )  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( ( A ^ 3 )  /  3 )  / 
2 )  =  ( ( A ^ 3 )  /  ( 3  x.  2 ) ) )
7974, 77, 78mp3an23 1363 . . . . . . . . . . 11  |-  ( ( A ^ 3 )  e.  CC  ->  (
( ( A ^
3 )  /  3
)  /  2 )  =  ( ( A ^ 3 )  / 
( 3  x.  2 ) ) )
8071, 79syl 14 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  3
)  /  2 )  =  ( ( A ^ 3 )  / 
( 3  x.  2 ) ) )
81 3t2e6 9263 . . . . . . . . . . 11  |-  ( 3  x.  2 )  =  6
8281oveq2i 6011 . . . . . . . . . 10  |-  ( ( A ^ 3 )  /  ( 3  x.  2 ) )  =  ( ( A ^
3 )  /  6
)
8380, 82eqtr2di 2279 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  =  ( ( ( A ^ 3 )  /  3 )  / 
2 ) )
8483, 83oveq12d 6018 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  6
)  +  ( ( A ^ 3 )  /  6 ) )  =  ( ( ( ( A ^ 3 )  /  3 )  /  2 )  +  ( ( ( A ^ 3 )  / 
3 )  /  2
) ) )
85 3nn 9269 . . . . . . . . . . 11  |-  3  e.  NN
86 nndivre 9142 . . . . . . . . . . 11  |-  ( ( ( A ^ 3 )  e.  RR  /\  3  e.  NN )  ->  ( ( A ^
3 )  /  3
)  e.  RR )
8714, 85, 86sylancl 413 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
8887recnd 8171 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  CC )
89882halvesd 9353 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( A ^ 3 )  / 
3 )  /  2
)  +  ( ( ( A ^ 3 )  /  3 )  /  2 ) )  =  ( ( A ^ 3 )  / 
3 ) )
9084, 89eqtrd 2262 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  6
)  +  ( ( A ^ 3 )  /  6 ) )  =  ( ( A ^ 3 )  / 
3 ) )
9190oveq2d 6016 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( (
( A ^ 3 )  /  6 )  +  ( ( A ^ 3 )  / 
6 ) ) )  =  ( A  -  ( ( A ^
3 )  /  3
) ) )
9270, 91eqtrd 2262 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( A ^
3 )  /  3
) ) )
9392breq1d 4092 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A  -  ( ( A ^
3 )  /  6
) )  -  (
( A ^ 3 )  /  6 ) )  <  ( sin `  A )  <->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) ) )
9421, 69npcand 8457 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( ( A ^ 3 )  /  6 ) )  =  A )
9594breq2d 4094 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( sin `  A
)  <  ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  +  ( ( A ^
3 )  /  6
) )  <->  ( sin `  A )  <  A
) )
9693, 95anbi12d 473 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  -  ( ( A ^
3 )  /  6
) )  <  ( sin `  A )  /\  ( sin `  A )  <  ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  +  ( ( A ^
3 )  /  6
) ) )  <->  ( ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
)  /\  ( sin `  A )  <  A
) ) )
9768, 96bitrd 188 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 )  <->  ( ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
)  /\  ( sin `  A )  <  A
) ) )
9867, 97mpbid 147 1  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082    |-> cmpt 4144   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995   1c1 7996   _ici 7997    + caddc 7998    x. cmul 8000   RR*cxr 8176    < clt 8177    <_ cle 8178    - cmin 8313   # cap 8724    / cdiv 8815   NNcn 9106   2c2 9157   3c3 9158   4c4 9159   6c6 9161   NN0cn0 9365   ZZcz 9442   ZZ>=cuz 9718   (,]cioc 10081   ^cexp 10755   !cfa 10942   Imcim 11347   abscabs 11503   sum_csu 11859   sincsin 12150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-ioc 10085  df-ico 10086  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-ihash 10993  df-shft 11321  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-sin 12156
This theorem is referenced by:  sinltxirr  12267  sin01gt0  12268  tangtx  15506  pigt3  15512
  Copyright terms: Public domain W3C validator