ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin01bnd Unicode version

Theorem sin01bnd 11698
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )

Proof of Theorem sin01bnd
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7945 . . . . . . . . 9  |-  0  e.  RR*
2 1re 7898 . . . . . . . . 9  |-  1  e.  RR
3 elioc2 9872 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 423 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 1002 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 eqid 2165 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) )
76resin4p 11659 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
85, 7syl 14 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
98eqcomd 2171 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )  =  ( sin `  A
) )
105resincld 11664 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  RR )
1110recnd 7927 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  CC )
12 3nn0 9132 . . . . . . . . . 10  |-  3  e.  NN0
13 reexpcl 10472 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
145, 12, 13sylancl 410 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  RR )
15 6nn 9022 . . . . . . . . 9  |-  6  e.  NN
16 nndivre 8893 . . . . . . . . 9  |-  ( ( ( A ^ 3 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
3 )  /  6
)  e.  RR )
1714, 15, 16sylancl 410 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  e.  RR )
185, 17resubcld 8279 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  RR )
1918recnd 7927 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  CC )
20 ax-icn 7848 . . . . . . . . . 10  |-  _i  e.  CC
215recnd 7927 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
22 mulcl 7880 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
2320, 21, 22sylancr 411 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
24 4nn0 9133 . . . . . . . . 9  |-  4  e.  NN0
256eftlcl 11629 . . . . . . . . 9  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
2623, 24, 25sylancl 410 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2726imcld 10881 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  RR )
2827recnd 7927 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  CC )
2911, 19, 28subaddd 8227 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  =  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) )  <-> 
( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) )  =  ( sin `  A
) ) )
309, 29mpbird 166 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  =  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )
3130fveq2d 5490 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( sin `  A )  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  =  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) ) )
3228abscld 11123 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  e.  RR )
3326abscld 11123 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  e.  RR )
34 absimle 11026 . . . . 5  |-  ( sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
3526, 34syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
36 reexpcl 10472 . . . . . . 7  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
375, 24, 36sylancl 410 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
38 nndivre 8893 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
3937, 15, 38sylancl 410 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
406ef01bndlem 11697 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 4 )  /  6 ) )
4112a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  3  e.  NN0 )
42 4z 9221 . . . . . . . . 9  |-  4  e.  ZZ
43 3re 8931 . . . . . . . . . 10  |-  3  e.  RR
44 4re 8934 . . . . . . . . . 10  |-  4  e.  RR
45 3lt4 9029 . . . . . . . . . 10  |-  3  <  4
4643, 44, 45ltleii 8001 . . . . . . . . 9  |-  3  <_  4
47 3z 9220 . . . . . . . . . 10  |-  3  e.  ZZ
4847eluz1i 9473 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
4942, 46, 48mpbir2an 932 . . . . . . . 8  |-  4  e.  ( ZZ>= `  3 )
5049a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  ( ZZ>= `  3 )
)
514simp2bi 1003 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
52 0re 7899 . . . . . . . . 9  |-  0  e.  RR
53 ltle 7986 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
5452, 5, 53sylancr 411 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
5551, 54mpd 13 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
564simp3bi 1004 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
575, 41, 50, 55, 56leexp2rd 10618 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  <_ 
( A ^ 3 ) )
58 6re 8938 . . . . . . . 8  |-  6  e.  RR
5958a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  6  e.  RR )
60 6pos 8958 . . . . . . . 8  |-  0  <  6
6160a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  6 )
62 lediv1 8764 . . . . . . 7  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( A ^ 3 )  e.  RR  /\  (
6  e.  RR  /\  0  <  6 ) )  ->  ( ( A ^ 4 )  <_ 
( A ^ 3 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 3 )  /  6 ) ) )
6337, 14, 59, 61, 62syl112anc 1232 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  <_  ( A ^ 3 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 3 )  /  6 ) ) )
6457, 63mpbid 146 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  <_  ( ( A ^ 3 )  / 
6 ) )
6533, 39, 17, 40, 64ltletrd 8321 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 3 )  /  6 ) )
6632, 33, 17, 35, 65lelttrd 8023 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <  ( ( A ^ 3 )  /  6 ) )
6731, 66eqbrtrd 4004 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( sin `  A )  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 ) )
6810, 18, 17absdifltd 11120 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 )  <->  ( (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  <  ( sin `  A
)  /\  ( sin `  A )  <  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( ( A ^ 3 )  /  6 ) ) ) ) )
6917recnd 7927 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  e.  CC )
7021, 69, 69subsub4d 8240 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( ( A ^ 3 )  / 
6 )  +  ( ( A ^ 3 )  /  6 ) ) ) )
7114recnd 7927 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  CC )
72 3cn 8932 . . . . . . . . . . . . 13  |-  3  e.  CC
73 3ap0 8953 . . . . . . . . . . . . 13  |-  3 #  0
7472, 73pm3.2i 270 . . . . . . . . . . . 12  |-  ( 3  e.  CC  /\  3 #  0 )
75 2cn 8928 . . . . . . . . . . . . 13  |-  2  e.  CC
76 2ap0 8950 . . . . . . . . . . . . 13  |-  2 #  0
7775, 76pm3.2i 270 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2 #  0 )
78 divdivap1 8619 . . . . . . . . . . . 12  |-  ( ( ( A ^ 3 )  e.  CC  /\  ( 3  e.  CC  /\  3 #  0 )  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( ( A ^ 3 )  /  3 )  / 
2 )  =  ( ( A ^ 3 )  /  ( 3  x.  2 ) ) )
7974, 77, 78mp3an23 1319 . . . . . . . . . . 11  |-  ( ( A ^ 3 )  e.  CC  ->  (
( ( A ^
3 )  /  3
)  /  2 )  =  ( ( A ^ 3 )  / 
( 3  x.  2 ) ) )
8071, 79syl 14 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  3
)  /  2 )  =  ( ( A ^ 3 )  / 
( 3  x.  2 ) ) )
81 3t2e6 9013 . . . . . . . . . . 11  |-  ( 3  x.  2 )  =  6
8281oveq2i 5853 . . . . . . . . . 10  |-  ( ( A ^ 3 )  /  ( 3  x.  2 ) )  =  ( ( A ^
3 )  /  6
)
8380, 82eqtr2di 2216 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  =  ( ( ( A ^ 3 )  /  3 )  / 
2 ) )
8483, 83oveq12d 5860 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  6
)  +  ( ( A ^ 3 )  /  6 ) )  =  ( ( ( ( A ^ 3 )  /  3 )  /  2 )  +  ( ( ( A ^ 3 )  / 
3 )  /  2
) ) )
85 3nn 9019 . . . . . . . . . . 11  |-  3  e.  NN
86 nndivre 8893 . . . . . . . . . . 11  |-  ( ( ( A ^ 3 )  e.  RR  /\  3  e.  NN )  ->  ( ( A ^
3 )  /  3
)  e.  RR )
8714, 85, 86sylancl 410 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
8887recnd 7927 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  CC )
89882halvesd 9102 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( A ^ 3 )  / 
3 )  /  2
)  +  ( ( ( A ^ 3 )  /  3 )  /  2 ) )  =  ( ( A ^ 3 )  / 
3 ) )
9084, 89eqtrd 2198 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  6
)  +  ( ( A ^ 3 )  /  6 ) )  =  ( ( A ^ 3 )  / 
3 ) )
9190oveq2d 5858 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( (
( A ^ 3 )  /  6 )  +  ( ( A ^ 3 )  / 
6 ) ) )  =  ( A  -  ( ( A ^
3 )  /  3
) ) )
9270, 91eqtrd 2198 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( A ^
3 )  /  3
) ) )
9392breq1d 3992 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A  -  ( ( A ^
3 )  /  6
) )  -  (
( A ^ 3 )  /  6 ) )  <  ( sin `  A )  <->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) ) )
9421, 69npcand 8213 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( ( A ^ 3 )  /  6 ) )  =  A )
9594breq2d 3994 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( sin `  A
)  <  ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  +  ( ( A ^
3 )  /  6
) )  <->  ( sin `  A )  <  A
) )
9693, 95anbi12d 465 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  -  ( ( A ^
3 )  /  6
) )  <  ( sin `  A )  /\  ( sin `  A )  <  ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  +  ( ( A ^
3 )  /  6
) ) )  <->  ( ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
)  /\  ( sin `  A )  <  A
) ) )
9768, 96bitrd 187 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 )  <->  ( ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
)  /\  ( sin `  A )  <  A
) ) )
9867, 97mpbid 146 1  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982    |-> cmpt 4043   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754   _ici 7755    + caddc 7756    x. cmul 7758   RR*cxr 7932    < clt 7933    <_ cle 7934    - cmin 8069   # cap 8479    / cdiv 8568   NNcn 8857   2c2 8908   3c3 8909   4c4 8910   6c6 8912   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   (,]cioc 9825   ^cexp 10454   !cfa 10638   Imcim 10783   abscabs 10939   sum_csu 11294   sincsin 11585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ioc 9829  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591
This theorem is referenced by:  sin01gt0  11702  tangtx  13399  pigt3  13405
  Copyright terms: Public domain W3C validator