ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin01bnd Unicode version

Theorem sin01bnd 11500
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )

Proof of Theorem sin01bnd
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7836 . . . . . . . . 9  |-  0  e.  RR*
2 1re 7789 . . . . . . . . 9  |-  1  e.  RR
3 elioc2 9749 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 423 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 997 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 eqid 2140 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) )
76resin4p 11461 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
85, 7syl 14 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
98eqcomd 2146 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )  =  ( sin `  A
) )
105resincld 11466 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  RR )
1110recnd 7818 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  CC )
12 3nn0 9019 . . . . . . . . . 10  |-  3  e.  NN0
13 reexpcl 10341 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
145, 12, 13sylancl 410 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  RR )
15 6nn 8909 . . . . . . . . 9  |-  6  e.  NN
16 nndivre 8780 . . . . . . . . 9  |-  ( ( ( A ^ 3 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
3 )  /  6
)  e.  RR )
1714, 15, 16sylancl 410 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  e.  RR )
185, 17resubcld 8167 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  RR )
1918recnd 7818 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  CC )
20 ax-icn 7739 . . . . . . . . . 10  |-  _i  e.  CC
215recnd 7818 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
22 mulcl 7771 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
2320, 21, 22sylancr 411 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
24 4nn0 9020 . . . . . . . . 9  |-  4  e.  NN0
256eftlcl 11431 . . . . . . . . 9  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
2623, 24, 25sylancl 410 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2726imcld 10743 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  RR )
2827recnd 7818 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  CC )
2911, 19, 28subaddd 8115 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  =  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) )  <-> 
( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) )  =  ( sin `  A
) ) )
309, 29mpbird 166 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  =  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )
3130fveq2d 5433 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( sin `  A )  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  =  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) ) )
3228abscld 10985 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  e.  RR )
3326abscld 10985 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  e.  RR )
34 absimle 10888 . . . . 5  |-  ( sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
3526, 34syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
36 reexpcl 10341 . . . . . . 7  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
375, 24, 36sylancl 410 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
38 nndivre 8780 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
3937, 15, 38sylancl 410 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
406ef01bndlem 11499 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 4 )  /  6 ) )
4112a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  3  e.  NN0 )
42 4z 9108 . . . . . . . . 9  |-  4  e.  ZZ
43 3re 8818 . . . . . . . . . 10  |-  3  e.  RR
44 4re 8821 . . . . . . . . . 10  |-  4  e.  RR
45 3lt4 8916 . . . . . . . . . 10  |-  3  <  4
4643, 44, 45ltleii 7890 . . . . . . . . 9  |-  3  <_  4
47 3z 9107 . . . . . . . . . 10  |-  3  e.  ZZ
4847eluz1i 9357 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
4942, 46, 48mpbir2an 927 . . . . . . . 8  |-  4  e.  ( ZZ>= `  3 )
5049a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  ( ZZ>= `  3 )
)
514simp2bi 998 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
52 0re 7790 . . . . . . . . 9  |-  0  e.  RR
53 ltle 7875 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
5452, 5, 53sylancr 411 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
5551, 54mpd 13 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
564simp3bi 999 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
575, 41, 50, 55, 56leexp2rd 10485 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  <_ 
( A ^ 3 ) )
58 6re 8825 . . . . . . . 8  |-  6  e.  RR
5958a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  6  e.  RR )
60 6pos 8845 . . . . . . . 8  |-  0  <  6
6160a1i 9 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  6 )
62 lediv1 8651 . . . . . . 7  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( A ^ 3 )  e.  RR  /\  (
6  e.  RR  /\  0  <  6 ) )  ->  ( ( A ^ 4 )  <_ 
( A ^ 3 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 3 )  /  6 ) ) )
6337, 14, 59, 61, 62syl112anc 1221 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  <_  ( A ^ 3 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 3 )  /  6 ) ) )
6457, 63mpbid 146 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  <_  ( ( A ^ 3 )  / 
6 ) )
6533, 39, 17, 40, 64ltletrd 8209 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 3 )  /  6 ) )
6632, 33, 17, 35, 65lelttrd 7911 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <  ( ( A ^ 3 )  /  6 ) )
6731, 66eqbrtrd 3958 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( sin `  A )  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 ) )
6810, 18, 17absdifltd 10982 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 )  <->  ( (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  <  ( sin `  A
)  /\  ( sin `  A )  <  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( ( A ^ 3 )  /  6 ) ) ) ) )
6917recnd 7818 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  e.  CC )
7021, 69, 69subsub4d 8128 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( ( A ^ 3 )  / 
6 )  +  ( ( A ^ 3 )  /  6 ) ) ) )
7114recnd 7818 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  CC )
72 3cn 8819 . . . . . . . . . . . . 13  |-  3  e.  CC
73 3ap0 8840 . . . . . . . . . . . . 13  |-  3 #  0
7472, 73pm3.2i 270 . . . . . . . . . . . 12  |-  ( 3  e.  CC  /\  3 #  0 )
75 2cn 8815 . . . . . . . . . . . . 13  |-  2  e.  CC
76 2ap0 8837 . . . . . . . . . . . . 13  |-  2 #  0
7775, 76pm3.2i 270 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2 #  0 )
78 divdivap1 8507 . . . . . . . . . . . 12  |-  ( ( ( A ^ 3 )  e.  CC  /\  ( 3  e.  CC  /\  3 #  0 )  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( ( A ^ 3 )  /  3 )  / 
2 )  =  ( ( A ^ 3 )  /  ( 3  x.  2 ) ) )
7974, 77, 78mp3an23 1308 . . . . . . . . . . 11  |-  ( ( A ^ 3 )  e.  CC  ->  (
( ( A ^
3 )  /  3
)  /  2 )  =  ( ( A ^ 3 )  / 
( 3  x.  2 ) ) )
8071, 79syl 14 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  3
)  /  2 )  =  ( ( A ^ 3 )  / 
( 3  x.  2 ) ) )
81 3t2e6 8900 . . . . . . . . . . 11  |-  ( 3  x.  2 )  =  6
8281oveq2i 5793 . . . . . . . . . 10  |-  ( ( A ^ 3 )  /  ( 3  x.  2 ) )  =  ( ( A ^
3 )  /  6
)
8380, 82eqtr2di 2190 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  =  ( ( ( A ^ 3 )  /  3 )  / 
2 ) )
8483, 83oveq12d 5800 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  6
)  +  ( ( A ^ 3 )  /  6 ) )  =  ( ( ( ( A ^ 3 )  /  3 )  /  2 )  +  ( ( ( A ^ 3 )  / 
3 )  /  2
) ) )
85 3nn 8906 . . . . . . . . . . 11  |-  3  e.  NN
86 nndivre 8780 . . . . . . . . . . 11  |-  ( ( ( A ^ 3 )  e.  RR  /\  3  e.  NN )  ->  ( ( A ^
3 )  /  3
)  e.  RR )
8714, 85, 86sylancl 410 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
8887recnd 7818 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  CC )
89882halvesd 8989 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( A ^ 3 )  / 
3 )  /  2
)  +  ( ( ( A ^ 3 )  /  3 )  /  2 ) )  =  ( ( A ^ 3 )  / 
3 ) )
9084, 89eqtrd 2173 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  6
)  +  ( ( A ^ 3 )  /  6 ) )  =  ( ( A ^ 3 )  / 
3 ) )
9190oveq2d 5798 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( (
( A ^ 3 )  /  6 )  +  ( ( A ^ 3 )  / 
6 ) ) )  =  ( A  -  ( ( A ^
3 )  /  3
) ) )
9270, 91eqtrd 2173 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( A ^
3 )  /  3
) ) )
9392breq1d 3947 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A  -  ( ( A ^
3 )  /  6
) )  -  (
( A ^ 3 )  /  6 ) )  <  ( sin `  A )  <->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) ) )
9421, 69npcand 8101 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( ( A ^ 3 )  /  6 ) )  =  A )
9594breq2d 3949 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( sin `  A
)  <  ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  +  ( ( A ^
3 )  /  6
) )  <->  ( sin `  A )  <  A
) )
9693, 95anbi12d 465 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  -  ( ( A ^
3 )  /  6
) )  <  ( sin `  A )  /\  ( sin `  A )  <  ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  +  ( ( A ^
3 )  /  6
) ) )  <->  ( ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
)  /\  ( sin `  A )  <  A
) ) )
9768, 96bitrd 187 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 )  <->  ( ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
)  /\  ( sin `  A )  <  A
) ) )
9867, 97mpbid 146 1  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937    |-> cmpt 3997   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645   _ici 7646    + caddc 7647    x. cmul 7649   RR*cxr 7823    < clt 7824    <_ cle 7825    - cmin 7957   # cap 8367    / cdiv 8456   NNcn 8744   2c2 8795   3c3 8796   4c4 8797   6c6 8799   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   (,]cioc 9702   ^cexp 10323   !cfa 10503   Imcim 10645   abscabs 10801   sum_csu 11154   sincsin 11387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ioc 9706  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393
This theorem is referenced by:  sin01gt0  11504  tangtx  12967  pigt3  12973
  Copyright terms: Public domain W3C validator