![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eqr | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6eqr.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6eqr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6eqr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqr.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6eqr.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2093 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | syl6eq 2137 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 |
This theorem is referenced by: 3eqtr4g 2146 rabxmdc 3320 relop 4601 csbcnvg 4635 dfiun3g 4705 dfiin3g 4706 resima2 4761 relcnvfld 4979 uniabio 5005 fntpg 5085 dffn5im 5365 dfimafn2 5369 fncnvima2 5436 fmptcof 5481 fcoconst 5484 fnasrng 5493 ffnov 5765 fnovim 5769 fnrnov 5806 foov 5807 funimassov 5810 ovelimab 5811 ofc12 5891 caofinvl 5893 dftpos3 6043 tfr0dm 6103 rdgisucinc 6166 oasuc 6241 ecinxp 6383 phplem1 6624 exmidpw 6680 unfiin 6692 fidcenumlemr 6720 0ct 6845 ctmlemr 6846 indpi 6964 nqnq0pi 7060 nq0m0r 7078 addnqpr1 7184 recexgt0sr 7382 recidpipr 7456 recidpirq 7458 axrnegex 7477 nntopi 7492 cnref1o 9196 fztp 9555 fseq1m1p1 9572 frecuzrdgrrn 9878 frecuzrdgsuc 9884 frecuzrdgsuctlem 9893 iseqvalt 9936 seq3val 9937 seq3feq 9960 seq3shft2 9962 iseqseq3 9965 fser0const 10014 mulexpzap 10058 expaddzap 10062 bcp1m1 10236 cjexp 10390 rexuz3 10486 climconst 10741 sumfct 10826 zisum 10837 fisum 10841 sum0 10843 fsumcnv 10894 mertenslem2 10993 ef0lem 11013 efzval 11036 efival 11086 sinbnd 11106 cosbnd 11107 eucalgval 11377 eucalginv 11379 eucalglt 11380 eucalgcvga 11381 eucalg 11382 sqpweven 11494 2sqpwodd 11495 dfphi2 11537 phimullem 11542 ressid2 11616 ressval2 11617 topnvalg 11727 istps 11793 cldval 11862 ntrfval 11863 clsfval 11864 neifval 11903 nninfsellemqall 12210 |
Copyright terms: Public domain | W3C validator |