ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6eqr Unicode version

Theorem syl6eqr 2139
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl6eqr.1  |-  ( ph  ->  A  =  B )
syl6eqr.2  |-  C  =  B
Assertion
Ref Expression
syl6eqr  |-  ( ph  ->  A  =  C )

Proof of Theorem syl6eqr
StepHypRef Expression
1 syl6eqr.1 . 2  |-  ( ph  ->  A  =  B )
2 syl6eqr.2 . . 3  |-  C  =  B
32eqcomi 2093 . 2  |-  B  =  C
41, 3syl6eq 2137 1  |-  ( ph  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-4 1446  ax-17 1465  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-cleq 2082
This theorem is referenced by:  3eqtr4g  2146  rabxmdc  3320  relop  4601  csbcnvg  4635  dfiun3g  4705  dfiin3g  4706  resima2  4761  relcnvfld  4979  uniabio  5005  fntpg  5085  dffn5im  5365  dfimafn2  5369  fncnvima2  5436  fmptcof  5481  fcoconst  5484  fnasrng  5493  ffnov  5765  fnovim  5769  fnrnov  5806  foov  5807  funimassov  5810  ovelimab  5811  ofc12  5891  caofinvl  5893  dftpos3  6043  tfr0dm  6103  rdgisucinc  6166  oasuc  6241  ecinxp  6383  phplem1  6624  exmidpw  6680  unfiin  6692  fidcenumlemr  6720  0ct  6845  ctmlemr  6846  indpi  6964  nqnq0pi  7060  nq0m0r  7078  addnqpr1  7184  recexgt0sr  7382  recidpipr  7456  recidpirq  7458  axrnegex  7477  nntopi  7492  cnref1o  9196  fztp  9555  fseq1m1p1  9572  frecuzrdgrrn  9878  frecuzrdgsuc  9884  frecuzrdgsuctlem  9893  iseqvalt  9936  seq3val  9937  seq3feq  9960  seq3shft2  9962  iseqseq3  9965  fser0const  10014  mulexpzap  10058  expaddzap  10062  bcp1m1  10236  cjexp  10390  rexuz3  10486  climconst  10741  sumfct  10826  zisum  10837  fisum  10841  sum0  10843  fsumcnv  10894  mertenslem2  10993  ef0lem  11013  efzval  11036  efival  11086  sinbnd  11106  cosbnd  11107  eucalgval  11377  eucalginv  11379  eucalglt  11380  eucalgcvga  11381  eucalg  11382  sqpweven  11494  2sqpwodd  11495  dfphi2  11537  phimullem  11542  ressid2  11616  ressval2  11617  topnvalg  11727  istps  11793  cldval  11862  ntrfval  11863  clsfval  11864  neifval  11903  nninfsellemqall  12210
  Copyright terms: Public domain W3C validator