ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnei Unicode version

Theorem isnei 12327
Description: The predicate "the class  N is a neighborhood of  S". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
isnei  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
Distinct variable groups:    g, J    g, N    S, g    g, X

Proof of Theorem isnei
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4  |-  X  = 
U. J
21neival 12326 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
32eleq2d 2209 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  N  e.  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } ) )
4 sseq2 3121 . . . . . . 7  |-  ( v  =  N  ->  (
g  C_  v  <->  g  C_  N ) )
54anbi2d 459 . . . . . 6  |-  ( v  =  N  ->  (
( S  C_  g  /\  g  C_  v )  <-> 
( S  C_  g  /\  g  C_  N ) ) )
65rexbidv 2438 . . . . 5  |-  ( v  =  N  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  v )  <->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
76elrab 2840 . . . 4  |-  ( N  e.  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  <->  ( N  e.  ~P X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
81topopn 12189 . . . . . 6  |-  ( J  e.  Top  ->  X  e.  J )
9 elpw2g 4081 . . . . . 6  |-  ( X  e.  J  ->  ( N  e.  ~P X  <->  N 
C_  X ) )
108, 9syl 14 . . . . 5  |-  ( J  e.  Top  ->  ( N  e.  ~P X  <->  N 
C_  X ) )
1110anbi1d 460 . . . 4  |-  ( J  e.  Top  ->  (
( N  e.  ~P X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N
) )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
127, 11syl5bb 191 . . 3  |-  ( J  e.  Top  ->  ( N  e.  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
1312adantr 274 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  {
v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  <-> 
( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
143, 13bitrd 187 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2417   {crab 2420    C_ wss 3071   ~Pcpw 3510   U.cuni 3736   ` cfv 5123   Topctop 12178   neicnei 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-top 12179  df-nei 12322
This theorem is referenced by:  neiint  12328  isneip  12329  neii1  12330  neii2  12332  neiss  12333  neipsm  12337  opnneissb  12338  opnssneib  12339  ssnei2  12340  innei  12346  neitx  12451
  Copyright terms: Public domain W3C validator