ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neival Unicode version

Theorem neival 12793
Description: Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neival  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
Distinct variable groups:    v, g, J    S, g, v    g, X, v

Proof of Theorem neival
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5  |-  X  = 
U. J
21neifval 12790 . . . 4  |-  ( J  e.  Top  ->  ( nei `  J )  =  ( x  e.  ~P X  |->  { v  e. 
~P X  |  E. g  e.  J  (
x  C_  g  /\  g  C_  v ) } ) )
32fveq1d 5488 . . 3  |-  ( J  e.  Top  ->  (
( nei `  J
) `  S )  =  ( ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `  S ) )
43adantr 274 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  ( ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `  S ) )
51topopn 12656 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4135 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 14 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 295 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
9 pwexg 4159 . . . . 5  |-  ( X  e.  J  ->  ~P X  e.  _V )
10 rabexg 4125 . . . . 5  |-  ( ~P X  e.  _V  ->  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )
115, 9, 103syl 17 . . . 4  |-  ( J  e.  Top  ->  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )
1211adantr 274 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )
13 sseq1 3165 . . . . . . 7  |-  ( x  =  S  ->  (
x  C_  g  <->  S  C_  g
) )
1413anbi1d 461 . . . . . 6  |-  ( x  =  S  ->  (
( x  C_  g  /\  g  C_  v )  <-> 
( S  C_  g  /\  g  C_  v ) ) )
1514rexbidv 2467 . . . . 5  |-  ( x  =  S  ->  ( E. g  e.  J  ( x  C_  g  /\  g  C_  v )  <->  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) ) )
1615rabbidv 2715 . . . 4  |-  ( x  =  S  ->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) }  =  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
17 eqid 2165 . . . 4  |-  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } )  =  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } )
1816, 17fvmptg 5562 . . 3  |-  ( ( S  e.  ~P X  /\  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )  ->  ( ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `
 S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
198, 12, 18syl2anc 409 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( x  e. 
~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `  S )  =  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
204, 19eqtrd 2198 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445   {crab 2448   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559   U.cuni 3789    |-> cmpt 4043   ` cfv 5188   Topctop 12645   neicnei 12788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-top 12646  df-nei 12789
This theorem is referenced by:  isnei  12794
  Copyright terms: Public domain W3C validator