ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neival Unicode version

Theorem neival 14730
Description: Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neival  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
Distinct variable groups:    v, g, J    S, g, v    g, X, v

Proof of Theorem neival
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5  |-  X  = 
U. J
21neifval 14727 . . . 4  |-  ( J  e.  Top  ->  ( nei `  J )  =  ( x  e.  ~P X  |->  { v  e. 
~P X  |  E. g  e.  J  (
x  C_  g  /\  g  C_  v ) } ) )
32fveq1d 5601 . . 3  |-  ( J  e.  Top  ->  (
( nei `  J
) `  S )  =  ( ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `  S ) )
43adantr 276 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  ( ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `  S ) )
51topopn 14595 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4216 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 14 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 297 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
9 pwexg 4240 . . . . 5  |-  ( X  e.  J  ->  ~P X  e.  _V )
10 rabexg 4203 . . . . 5  |-  ( ~P X  e.  _V  ->  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )
115, 9, 103syl 17 . . . 4  |-  ( J  e.  Top  ->  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )
1211adantr 276 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )
13 sseq1 3224 . . . . . . 7  |-  ( x  =  S  ->  (
x  C_  g  <->  S  C_  g
) )
1413anbi1d 465 . . . . . 6  |-  ( x  =  S  ->  (
( x  C_  g  /\  g  C_  v )  <-> 
( S  C_  g  /\  g  C_  v ) ) )
1514rexbidv 2509 . . . . 5  |-  ( x  =  S  ->  ( E. g  e.  J  ( x  C_  g  /\  g  C_  v )  <->  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) ) )
1615rabbidv 2765 . . . 4  |-  ( x  =  S  ->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) }  =  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
17 eqid 2207 . . . 4  |-  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } )  =  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } )
1816, 17fvmptg 5678 . . 3  |-  ( ( S  e.  ~P X  /\  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )  ->  ( ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `
 S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
198, 12, 18syl2anc 411 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( x  e. 
~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `  S )  =  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
204, 19eqtrd 2240 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   E.wrex 2487   {crab 2490   _Vcvv 2776    C_ wss 3174   ~Pcpw 3626   U.cuni 3864    |-> cmpt 4121   ` cfv 5290   Topctop 14584   neicnei 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-top 14585  df-nei 14726
This theorem is referenced by:  isnei  14731
  Copyright terms: Public domain W3C validator