ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neival Unicode version

Theorem neival 12937
Description: Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neival  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
Distinct variable groups:    v, g, J    S, g, v    g, X, v

Proof of Theorem neival
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5  |-  X  = 
U. J
21neifval 12934 . . . 4  |-  ( J  e.  Top  ->  ( nei `  J )  =  ( x  e.  ~P X  |->  { v  e. 
~P X  |  E. g  e.  J  (
x  C_  g  /\  g  C_  v ) } ) )
32fveq1d 5498 . . 3  |-  ( J  e.  Top  ->  (
( nei `  J
) `  S )  =  ( ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `  S ) )
43adantr 274 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  ( ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `  S ) )
51topopn 12800 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4142 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 14 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 295 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
9 pwexg 4166 . . . . 5  |-  ( X  e.  J  ->  ~P X  e.  _V )
10 rabexg 4132 . . . . 5  |-  ( ~P X  e.  _V  ->  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )
115, 9, 103syl 17 . . . 4  |-  ( J  e.  Top  ->  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )
1211adantr 274 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )
13 sseq1 3170 . . . . . . 7  |-  ( x  =  S  ->  (
x  C_  g  <->  S  C_  g
) )
1413anbi1d 462 . . . . . 6  |-  ( x  =  S  ->  (
( x  C_  g  /\  g  C_  v )  <-> 
( S  C_  g  /\  g  C_  v ) ) )
1514rexbidv 2471 . . . . 5  |-  ( x  =  S  ->  ( E. g  e.  J  ( x  C_  g  /\  g  C_  v )  <->  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) ) )
1615rabbidv 2719 . . . 4  |-  ( x  =  S  ->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) }  =  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
17 eqid 2170 . . . 4  |-  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } )  =  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } )
1816, 17fvmptg 5572 . . 3  |-  ( ( S  e.  ~P X  /\  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  e.  _V )  ->  ( ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `
 S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
198, 12, 18syl2anc 409 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( x  e. 
~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v ) } ) `  S )  =  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
204, 19eqtrd 2203 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449   {crab 2452   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566   U.cuni 3796    |-> cmpt 4050   ` cfv 5198   Topctop 12789   neicnei 12932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-top 12790  df-nei 12933
This theorem is referenced by:  isnei  12938
  Copyright terms: Public domain W3C validator