ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp7 Unicode version

Theorem elxp7 6316
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5216. (Contributed by NM, 19-Aug-2006.)
Assertion
Ref Expression
elxp7  |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) )

Proof of Theorem elxp7
StepHypRef Expression
1 elex 2811 . 2  |-  ( A  e.  ( B  X.  C )  ->  A  e.  _V )
2 elex 2811 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  A  e. 
_V )
32adantr 276 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  ->  A  e.  _V )
4 elxp6 6315 . . 3  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
5 elxp6 6315 . . . . 5  |-  ( A  e.  ( _V  X.  _V )  <->  ( A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V ) ) )
6 1stexg 6313 . . . . . . 7  |-  ( A  e.  _V  ->  ( 1st `  A )  e. 
_V )
7 2ndexg 6314 . . . . . . 7  |-  ( A  e.  _V  ->  ( 2nd `  A )  e. 
_V )
86, 7jca 306 . . . . . 6  |-  ( A  e.  _V  ->  (
( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V ) )
98biantrud 304 . . . . 5  |-  ( A  e.  _V  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. 
<->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e. 
_V  /\  ( 2nd `  A )  e.  _V ) ) ) )
105, 9bitr4id 199 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  ( _V  X.  _V )  <->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
)
1110anbi1d 465 . . 3  |-  ( A  e.  _V  ->  (
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  <-> 
( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) ) ) )
124, 11bitr4id 199 . 2  |-  ( A  e.  _V  ->  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) ) )
131, 3, 12pm5.21nii 709 1  |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669    X. cxp 4717   ` cfv 5318   1stc1st 6284   2ndc2nd 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6286  df-2nd 6287
This theorem is referenced by:  xp2  6319  unielxp  6320  1stconst  6367  2ndconst  6368  f1od2  6381
  Copyright terms: Public domain W3C validator