ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp7 Unicode version

Theorem elxp7 6237
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5158. (Contributed by NM, 19-Aug-2006.)
Assertion
Ref Expression
elxp7  |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) )

Proof of Theorem elxp7
StepHypRef Expression
1 elex 2774 . 2  |-  ( A  e.  ( B  X.  C )  ->  A  e.  _V )
2 elex 2774 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  A  e. 
_V )
32adantr 276 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  ->  A  e.  _V )
4 elxp6 6236 . . 3  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
5 elxp6 6236 . . . . 5  |-  ( A  e.  ( _V  X.  _V )  <->  ( A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V ) ) )
6 1stexg 6234 . . . . . . 7  |-  ( A  e.  _V  ->  ( 1st `  A )  e. 
_V )
7 2ndexg 6235 . . . . . . 7  |-  ( A  e.  _V  ->  ( 2nd `  A )  e. 
_V )
86, 7jca 306 . . . . . 6  |-  ( A  e.  _V  ->  (
( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V ) )
98biantrud 304 . . . . 5  |-  ( A  e.  _V  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. 
<->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e. 
_V  /\  ( 2nd `  A )  e.  _V ) ) ) )
105, 9bitr4id 199 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  ( _V  X.  _V )  <->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
)
1110anbi1d 465 . . 3  |-  ( A  e.  _V  ->  (
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  <-> 
( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) ) ) )
124, 11bitr4id 199 . 2  |-  ( A  e.  _V  ->  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) ) )
131, 3, 12pm5.21nii 705 1  |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   <.cop 3626    X. cxp 4662   ` cfv 5259   1stc1st 6205   2ndc2nd 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-1st 6207  df-2nd 6208
This theorem is referenced by:  xp2  6240  unielxp  6241  1stconst  6288  2ndconst  6289  f1od2  6302
  Copyright terms: Public domain W3C validator