![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xp2 | GIF version |
Description: Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
xp2 | ⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp7 6164 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵))) | |
2 | 1 | abbi2i 2292 | . 2 ⊢ (𝐴 × 𝐵) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵))} |
3 | df-rab 2464 | . 2 ⊢ {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵))} | |
4 | 2, 3 | eqtr4i 2201 | 1 ⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∈ wcel 2148 {cab 2163 {crab 2459 Vcvv 2737 × cxp 4620 ‘cfv 5211 1st c1st 6132 2nd c2nd 6133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4118 ax-pow 4171 ax-pr 4205 ax-un 4429 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-br 4001 df-opab 4062 df-mpt 4063 df-id 4289 df-xp 4628 df-rel 4629 df-cnv 4630 df-co 4631 df-dm 4632 df-rn 4633 df-iota 5173 df-fun 5213 df-fn 5214 df-f 5215 df-fo 5217 df-fv 5219 df-1st 6134 df-2nd 6135 |
This theorem is referenced by: unielxp 6168 |
Copyright terms: Public domain | W3C validator |