Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqopi | Unicode version |
Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
eqopi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 4707 | . . 3 | |
2 | 1 | sseli 3134 | . 2 |
3 | elxp6 6130 | . . . 4 | |
4 | 3 | simplbi 272 | . . 3 |
5 | opeq12 3755 | . . 3 | |
6 | 4, 5 | sylan9eq 2217 | . 2 |
7 | 2, 6 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1342 wcel 2135 cvv 2722 cop 3574 cxp 4597 cfv 5183 c1st 6099 c2nd 6100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2724 df-sbc 2948 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-iota 5148 df-fun 5185 df-fv 5191 df-1st 6101 df-2nd 6102 |
This theorem is referenced by: op1steq 6140 dfoprab3 6152 1stconst 6181 2ndconst 6182 cnvoprab 6194 upxp 12839 |
Copyright terms: Public domain | W3C validator |