ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqopi Unicode version

Theorem eqopi 6191
Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
eqopi  |-  ( ( A  e.  ( V  X.  W )  /\  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) )  ->  A  =  <. B ,  C >. )

Proof of Theorem eqopi
StepHypRef Expression
1 xpss 4749 . . 3  |-  ( V  X.  W )  C_  ( _V  X.  _V )
21sseli 3166 . 2  |-  ( A  e.  ( V  X.  W )  ->  A  e.  ( _V  X.  _V ) )
3 elxp6 6188 . . . 4  |-  ( A  e.  ( _V  X.  _V )  <->  ( A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V ) ) )
43simplbi 274 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >. )
5 opeq12 3795 . . 3  |-  ( ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. B ,  C >. )
64, 5sylan9eq 2242 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) )  ->  A  =  <. B ,  C >. )
72, 6sylan 283 1  |-  ( ( A  e.  ( V  X.  W )  /\  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) )  ->  A  =  <. B ,  C >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752   <.cop 3610    X. cxp 4639   ` cfv 5231   1stc1st 6157   2ndc2nd 6158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-iota 5193  df-fun 5233  df-fv 5239  df-1st 6159  df-2nd 6160
This theorem is referenced by:  op1steq  6198  dfoprab3  6210  1stconst  6240  2ndconst  6241  cnvoprab  6253  upxp  14169
  Copyright terms: Public domain W3C validator