ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqopi Unicode version

Theorem eqopi 6175
Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
eqopi  |-  ( ( A  e.  ( V  X.  W )  /\  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) )  ->  A  =  <. B ,  C >. )

Proof of Theorem eqopi
StepHypRef Expression
1 xpss 4736 . . 3  |-  ( V  X.  W )  C_  ( _V  X.  _V )
21sseli 3153 . 2  |-  ( A  e.  ( V  X.  W )  ->  A  e.  ( _V  X.  _V ) )
3 elxp6 6172 . . . 4  |-  ( A  e.  ( _V  X.  _V )  <->  ( A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V ) ) )
43simplbi 274 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >. )
5 opeq12 3782 . . 3  |-  ( ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. B ,  C >. )
64, 5sylan9eq 2230 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) )  ->  A  =  <. B ,  C >. )
72, 6sylan 283 1  |-  ( ( A  e.  ( V  X.  W )  /\  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) )  ->  A  =  <. B ,  C >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739   <.cop 3597    X. cxp 4626   ` cfv 5218   1stc1st 6141   2ndc2nd 6142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-1st 6143  df-2nd 6144
This theorem is referenced by:  op1steq  6182  dfoprab3  6194  1stconst  6224  2ndconst  6225  cnvoprab  6237  upxp  13811
  Copyright terms: Public domain W3C validator