ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomen Unicode version

Theorem xpcomen 6784
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
xpcomen.1  |-  A  e. 
_V
xpcomen.2  |-  B  e. 
_V
Assertion
Ref Expression
xpcomen  |-  ( A  X.  B )  ~~  ( B  X.  A
)

Proof of Theorem xpcomen
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xpcomen.1 . . 3  |-  A  e. 
_V
2 xpcomen.2 . . 3  |-  B  e. 
_V
31, 2xpex 4713 . 2  |-  ( A  X.  B )  e. 
_V
42, 1xpex 4713 . 2  |-  ( B  X.  A )  e. 
_V
5 eqid 2164 . . 3  |-  ( x  e.  ( A  X.  B )  |->  U. `' { x } )  =  ( x  e.  ( A  X.  B
)  |->  U. `' { x } )
65xpcomf1o 6782 . 2  |-  ( x  e.  ( A  X.  B )  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> ( B  X.  A
)
7 f1oen2g 6712 . 2  |-  ( ( ( A  X.  B
)  e.  _V  /\  ( B  X.  A
)  e.  _V  /\  ( x  e.  ( A  X.  B )  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> ( B  X.  A
) )  ->  ( A  X.  B )  ~~  ( B  X.  A
) )
83, 4, 6, 7mp3an 1326 1  |-  ( A  X.  B )  ~~  ( B  X.  A
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2135   _Vcvv 2721   {csn 3570   U.cuni 3783   class class class wbr 3976    |-> cmpt 4037    X. cxp 4596   `'ccnv 4597   -1-1-onto->wf1o 5181    ~~ cen 6695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1st 6100  df-2nd 6101  df-en 6698
This theorem is referenced by:  xpcomeng  6785
  Copyright terms: Public domain W3C validator