ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomen Unicode version

Theorem xpcomen 6881
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
xpcomen.1  |-  A  e. 
_V
xpcomen.2  |-  B  e. 
_V
Assertion
Ref Expression
xpcomen  |-  ( A  X.  B )  ~~  ( B  X.  A
)

Proof of Theorem xpcomen
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xpcomen.1 . . 3  |-  A  e. 
_V
2 xpcomen.2 . . 3  |-  B  e. 
_V
31, 2xpex 4774 . 2  |-  ( A  X.  B )  e. 
_V
42, 1xpex 4774 . 2  |-  ( B  X.  A )  e. 
_V
5 eqid 2193 . . 3  |-  ( x  e.  ( A  X.  B )  |->  U. `' { x } )  =  ( x  e.  ( A  X.  B
)  |->  U. `' { x } )
65xpcomf1o 6879 . 2  |-  ( x  e.  ( A  X.  B )  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> ( B  X.  A
)
7 f1oen2g 6809 . 2  |-  ( ( ( A  X.  B
)  e.  _V  /\  ( B  X.  A
)  e.  _V  /\  ( x  e.  ( A  X.  B )  |->  U. `' { x } ) : ( A  X.  B ) -1-1-onto-> ( B  X.  A
) )  ->  ( A  X.  B )  ~~  ( B  X.  A
) )
83, 4, 6, 7mp3an 1348 1  |-  ( A  X.  B )  ~~  ( B  X.  A
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   _Vcvv 2760   {csn 3618   U.cuni 3835   class class class wbr 4029    |-> cmpt 4090    X. cxp 4657   `'ccnv 4658   -1-1-onto->wf1o 5253    ~~ cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-en 6795
This theorem is referenced by:  xpcomeng  6882
  Copyright terms: Public domain W3C validator