![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpcomen | GIF version |
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
xpcomen.1 | ⊢ 𝐴 ∈ V |
xpcomen.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpcomen | ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcomen.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | xpcomen.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | xpex 4743 | . 2 ⊢ (𝐴 × 𝐵) ∈ V |
4 | 2, 1 | xpex 4743 | . 2 ⊢ (𝐵 × 𝐴) ∈ V |
5 | eqid 2177 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
6 | 5 | xpcomf1o 6827 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
7 | f1oen2g 6757 | . 2 ⊢ (((𝐴 × 𝐵) ∈ V ∧ (𝐵 × 𝐴) ∈ V ∧ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
8 | 3, 4, 6, 7 | mp3an 1337 | 1 ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 Vcvv 2739 {csn 3594 ∪ cuni 3811 class class class wbr 4005 ↦ cmpt 4066 × cxp 4626 ◡ccnv 4627 –1-1-onto→wf1o 5217 ≈ cen 6740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1st 6143 df-2nd 6144 df-en 6743 |
This theorem is referenced by: xpcomeng 6830 |
Copyright terms: Public domain | W3C validator |