| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpcomen | GIF version | ||
| Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpcomen.1 | ⊢ 𝐴 ∈ V |
| xpcomen.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpcomen | ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomen.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | xpcomen.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | xpex 4794 | . 2 ⊢ (𝐴 × 𝐵) ∈ V |
| 4 | 2, 1 | xpex 4794 | . 2 ⊢ (𝐵 × 𝐴) ∈ V |
| 5 | eqid 2206 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
| 6 | 5 | xpcomf1o 6927 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| 7 | f1oen2g 6853 | . 2 ⊢ (((𝐴 × 𝐵) ∈ V ∧ (𝐵 × 𝐴) ∈ V ∧ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
| 8 | 3, 4, 6, 7 | mp3an 1350 | 1 ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 {csn 3634 ∪ cuni 3852 class class class wbr 4047 ↦ cmpt 4109 × cxp 4677 ◡ccnv 4678 –1-1-onto→wf1o 5275 ≈ cen 6832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-1st 6233 df-2nd 6234 df-en 6835 |
| This theorem is referenced by: xpcomeng 6930 |
| Copyright terms: Public domain | W3C validator |