| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpcomen | GIF version | ||
| Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpcomen.1 | ⊢ 𝐴 ∈ V |
| xpcomen.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpcomen | ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomen.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | xpcomen.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | xpex 4779 | . 2 ⊢ (𝐴 × 𝐵) ∈ V |
| 4 | 2, 1 | xpex 4779 | . 2 ⊢ (𝐵 × 𝐴) ∈ V |
| 5 | eqid 2196 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
| 6 | 5 | xpcomf1o 6893 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| 7 | f1oen2g 6823 | . 2 ⊢ (((𝐴 × 𝐵) ∈ V ∧ (𝐵 × 𝐴) ∈ V ∧ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
| 8 | 3, 4, 6, 7 | mp3an 1348 | 1 ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 {csn 3623 ∪ cuni 3840 class class class wbr 4034 ↦ cmpt 4095 × cxp 4662 ◡ccnv 4663 –1-1-onto→wf1o 5258 ≈ cen 6806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 df-en 6809 |
| This theorem is referenced by: xpcomeng 6896 |
| Copyright terms: Public domain | W3C validator |