ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdom2g Unicode version

Theorem xpdom2g 6888
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom2g  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( C  X.  B ) )

Proof of Theorem xpdom2g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xpeq1 4674 . . . . 5  |-  ( x  =  C  ->  (
x  X.  A )  =  ( C  X.  A ) )
2 xpeq1 4674 . . . . 5  |-  ( x  =  C  ->  (
x  X.  B )  =  ( C  X.  B ) )
31, 2breq12d 4043 . . . 4  |-  ( x  =  C  ->  (
( x  X.  A
)  ~<_  ( x  X.  B )  <->  ( C  X.  A )  ~<_  ( C  X.  B ) ) )
43imbi2d 230 . . 3  |-  ( x  =  C  ->  (
( A  ~<_  B  -> 
( x  X.  A
)  ~<_  ( x  X.  B ) )  <->  ( A  ~<_  B  ->  ( C  X.  A )  ~<_  ( C  X.  B ) ) ) )
5 vex 2763 . . . 4  |-  x  e. 
_V
65xpdom2 6887 . . 3  |-  ( A  ~<_  B  ->  ( x  X.  A )  ~<_  ( x  X.  B ) )
74, 6vtoclg 2821 . 2  |-  ( C  e.  V  ->  ( A  ~<_  B  ->  ( C  X.  A )  ~<_  ( C  X.  B ) ) )
87imp 124 1  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( C  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4030    X. cxp 4658    ~<_ cdom 6795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fv 5263  df-dom 6798
This theorem is referenced by:  xpdom1g  6889
  Copyright terms: Public domain W3C validator