ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdom2g GIF version

Theorem xpdom2g 6886
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom2g ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))

Proof of Theorem xpdom2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xpeq1 4673 . . . . 5 (𝑥 = 𝐶 → (𝑥 × 𝐴) = (𝐶 × 𝐴))
2 xpeq1 4673 . . . . 5 (𝑥 = 𝐶 → (𝑥 × 𝐵) = (𝐶 × 𝐵))
31, 2breq12d 4042 . . . 4 (𝑥 = 𝐶 → ((𝑥 × 𝐴) ≼ (𝑥 × 𝐵) ↔ (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))
43imbi2d 230 . . 3 (𝑥 = 𝐶 → ((𝐴𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) ↔ (𝐴𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))))
5 vex 2763 . . . 4 𝑥 ∈ V
65xpdom2 6885 . . 3 (𝐴𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵))
74, 6vtoclg 2820 . 2 (𝐶𝑉 → (𝐴𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))
87imp 124 1 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164   class class class wbr 4029   × cxp 4657  cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262  df-dom 6796
This theorem is referenced by:  xpdom1g  6887
  Copyright terms: Public domain W3C validator