ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdom2g GIF version

Theorem xpdom2g 6798
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom2g ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))

Proof of Theorem xpdom2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xpeq1 4618 . . . . 5 (𝑥 = 𝐶 → (𝑥 × 𝐴) = (𝐶 × 𝐴))
2 xpeq1 4618 . . . . 5 (𝑥 = 𝐶 → (𝑥 × 𝐵) = (𝐶 × 𝐵))
31, 2breq12d 3995 . . . 4 (𝑥 = 𝐶 → ((𝑥 × 𝐴) ≼ (𝑥 × 𝐵) ↔ (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))
43imbi2d 229 . . 3 (𝑥 = 𝐶 → ((𝐴𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) ↔ (𝐴𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))))
5 vex 2729 . . . 4 𝑥 ∈ V
65xpdom2 6797 . . 3 (𝐴𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵))
74, 6vtoclg 2786 . 2 (𝐶𝑉 → (𝐴𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))
87imp 123 1 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   class class class wbr 3982   × cxp 4602  cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fv 5196  df-dom 6708
This theorem is referenced by:  xpdom1g  6799
  Copyright terms: Public domain W3C validator