| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > zre | Unicode version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) | 
| Ref | Expression | 
|---|---|
| zre | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elz 9328 | 
. 2
 | |
| 2 | 1 | simplbi 274 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-neg 8200 df-z 9327 | 
| This theorem is referenced by: zcn 9331 zrei 9332 zssre 9333 elnn0z 9339 elnnz1 9349 peano2z 9362 zaddcl 9366 ztri3or0 9368 ztri3or 9369 zletric 9370 zlelttric 9371 zltnle 9372 zleloe 9373 zletr 9375 znnsub 9377 nzadd 9378 zltp1le 9380 zleltp1 9381 znn0sub 9391 zapne 9400 zdceq 9401 zdcle 9402 zdclt 9403 zltlen 9404 nn0ge0div 9413 zextle 9417 btwnnz 9420 suprzclex 9424 msqznn 9426 peano2uz2 9433 uzind 9437 fzind 9441 fnn0ind 9442 eluzuzle 9609 uzid 9615 uzneg 9620 uz11 9624 eluzp1m1 9625 eluzp1p1 9627 eluzaddi 9628 eluzsubi 9629 uzin 9634 uz3m2nn 9647 peano2uz 9657 nn0pzuz 9661 eluz2b2 9677 uz2mulcl 9682 eqreznegel 9688 lbzbi 9690 qre 9699 elpq 9723 zltaddlt1le 10082 elfz1eq 10110 fznlem 10116 fzen 10118 uzsubsubfz 10122 fzaddel 10134 fzsuc2 10154 fzp1disj 10155 fzrev 10159 elfz1b 10165 fzneuz 10176 fzp1nel 10179 elfz0fzfz0 10201 fz0fzelfz0 10202 fznn0sub2 10203 fz0fzdiffz0 10205 elfzmlbp 10207 difelfznle 10210 nelfzo 10227 elfzouz2 10237 fzonlt0 10243 fzossrbm1 10249 fzo1fzo0n0 10259 elfzo0z 10260 fzofzim 10264 eluzgtdifelfzo 10273 fzossfzop1 10288 ssfzo12bi 10301 elfzomelpfzo 10307 fzosplitprm1 10310 fzostep1 10313 infssuzex 10323 flid 10374 flqbi2 10381 2tnp1ge0ge0 10391 flhalf 10392 fldiv4p1lem1div2 10395 fldiv4lem1div2uz2 10396 ceiqle 10405 uzsinds 10536 zsqcl2 10709 nn0abscl 11250 zmaxcl 11389 2zsupmax 11391 2zinfmin 11408 p1modz1 11959 evennn02n 12047 evennn2n 12048 ltoddhalfle 12058 bitsp1o 12117 dfgcd2 12181 algcvga 12219 isprm3 12286 dvdsnprmd 12293 sqnprm 12304 zgcdsq 12369 hashdvds 12389 fldivp1 12517 zgz 12542 4sqlem4 12561 4sqexercise1 12567 mulgval 13252 coskpi 15084 relogexp 15108 rplogbzexp 15190 zabsle1 15240 lgsne0 15279 gausslemma2dlem1a 15299 gausslemma2dlem3 15304 gausslemma2dlem4 15305 lgsquadlem1 15318 lgsquadlem2 15319 2lgslem1a1 15327 2lgslem1a2 15328 2sqlem2 15356 | 
| Copyright terms: Public domain | W3C validator |