| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zre | Unicode version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9296 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-rab 2477 df-v 2758 df-un 3152 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-br 4026 df-iota 5203 df-fv 5250 df-ov 5907 df-neg 8172 df-z 9295 |
| This theorem is referenced by: zcn 9299 zrei 9300 zssre 9301 elnn0z 9307 elnnz1 9317 peano2z 9330 zaddcl 9334 ztri3or0 9336 ztri3or 9337 zletric 9338 zlelttric 9339 zltnle 9340 zleloe 9341 zletr 9343 znnsub 9345 nzadd 9346 zltp1le 9348 zleltp1 9349 znn0sub 9359 zapne 9368 zdceq 9369 zdcle 9370 zdclt 9371 zltlen 9372 nn0ge0div 9381 zextle 9385 btwnnz 9388 suprzclex 9392 msqznn 9394 peano2uz2 9401 uzind 9405 fzind 9409 fnn0ind 9410 eluzuzle 9577 uzid 9583 uzneg 9588 uz11 9592 eluzp1m1 9593 eluzp1p1 9595 eluzaddi 9596 eluzsubi 9597 uzin 9602 uz3m2nn 9615 peano2uz 9625 nn0pzuz 9629 eluz2b2 9645 uz2mulcl 9650 eqreznegel 9656 lbzbi 9658 qre 9667 elpq 9690 zltaddlt1le 10049 elfz1eq 10077 fznlem 10083 fzen 10085 uzsubsubfz 10089 fzaddel 10101 fzsuc2 10121 fzp1disj 10122 fzrev 10126 elfz1b 10132 fzneuz 10143 fzp1nel 10146 elfz0fzfz0 10168 fz0fzelfz0 10169 fznn0sub2 10170 fz0fzdiffz0 10172 elfzmlbp 10174 difelfznle 10177 elfzouz2 10203 fzonlt0 10209 fzossrbm1 10215 fzo1fzo0n0 10225 elfzo0z 10226 fzofzim 10230 eluzgtdifelfzo 10239 fzossfzop1 10254 ssfzo12bi 10267 elfzomelpfzo 10273 fzosplitprm1 10276 fzostep1 10279 flid 10327 flqbi2 10334 2tnp1ge0ge0 10344 flhalf 10345 fldiv4p1lem1div2 10348 ceiqle 10356 uzsinds 10487 zsqcl2 10644 nn0abscl 11141 zmaxcl 11280 2zsupmax 11281 2zinfmin 11298 p1modz1 11848 evennn02n 11934 evennn2n 11935 ltoddhalfle 11945 infssuzex 11997 dfgcd2 12062 algcvga 12100 isprm3 12167 dvdsnprmd 12174 sqnprm 12185 zgcdsq 12250 hashdvds 12270 fldivp1 12397 zgz 12422 4sqlem4 12441 4sqexercise1 12447 mulgval 13095 coskpi 14807 relogexp 14831 rplogbzexp 14910 zabsle1 14939 lgsne0 14978 2sqlem2 15001 |
| Copyright terms: Public domain | W3C validator |