Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zre | Unicode version |
Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
zre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9193 | . 2 | |
2 | 1 | simplbi 272 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3o 967 wceq 1343 wcel 2136 cr 7752 cc0 7753 cneg 8070 cn 8857 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-neg 8072 df-z 9192 |
This theorem is referenced by: zcn 9196 zrei 9197 zssre 9198 elnn0z 9204 elnnz1 9214 peano2z 9227 zaddcl 9231 ztri3or0 9233 ztri3or 9234 zletric 9235 zlelttric 9236 zltnle 9237 zleloe 9238 zletr 9240 znnsub 9242 nzadd 9243 zltp1le 9245 zleltp1 9246 znn0sub 9256 zapne 9265 zdceq 9266 zdcle 9267 zdclt 9268 zltlen 9269 nn0ge0div 9278 zextle 9282 btwnnz 9285 suprzclex 9289 msqznn 9291 peano2uz2 9298 uzind 9302 fzind 9306 fnn0ind 9307 eluzuzle 9474 uzid 9480 uzneg 9484 uz11 9488 eluzp1m1 9489 eluzp1p1 9491 eluzaddi 9492 eluzsubi 9493 uzin 9498 uz3m2nn 9511 peano2uz 9521 nn0pzuz 9525 eluz2b2 9541 uz2mulcl 9546 eqreznegel 9552 lbzbi 9554 qre 9563 elpq 9586 zltaddlt1le 9943 elfz1eq 9970 fznlem 9976 fzen 9978 uzsubsubfz 9982 fzaddel 9994 fzsuc2 10014 fzp1disj 10015 fzrev 10019 elfz1b 10025 fzneuz 10036 fzp1nel 10039 elfz0fzfz0 10061 fz0fzelfz0 10062 fznn0sub2 10063 fz0fzdiffz0 10065 elfzmlbp 10067 difelfznle 10070 elfzouz2 10096 fzonlt0 10102 fzossrbm1 10108 fzo1fzo0n0 10118 elfzo0z 10119 fzofzim 10123 eluzgtdifelfzo 10132 fzossfzop1 10147 ssfzo12bi 10160 elfzomelpfzo 10166 fzosplitprm1 10169 fzostep1 10172 flid 10219 flqbi2 10226 2tnp1ge0ge0 10236 flhalf 10237 fldiv4p1lem1div2 10240 ceiqle 10248 uzsinds 10377 zsqcl2 10532 nn0abscl 11027 zmaxcl 11166 2zsupmax 11167 2zinfmin 11184 p1modz1 11734 evennn02n 11819 evennn2n 11820 ltoddhalfle 11830 infssuzex 11882 dfgcd2 11947 algcvga 11983 isprm3 12050 dvdsnprmd 12057 sqnprm 12068 zgcdsq 12133 hashdvds 12153 fldivp1 12278 zgz 12303 4sqlem4 12322 coskpi 13409 relogexp 13433 rplogbzexp 13512 zabsle1 13540 lgsne0 13579 2sqlem2 13591 |
Copyright terms: Public domain | W3C validator |