| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zre | Unicode version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9409 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-neg 8281 df-z 9408 |
| This theorem is referenced by: zcn 9412 zrei 9413 zssre 9414 elnn0z 9420 elnnz1 9430 peano2z 9443 zaddcl 9447 ztri3or0 9449 ztri3or 9450 zletric 9451 zlelttric 9452 zltnle 9453 zleloe 9454 zletr 9457 znnsub 9459 nzadd 9460 zltp1le 9462 zleltp1 9463 znn0sub 9473 zapne 9482 zdceq 9483 zdcle 9484 zdclt 9485 zltlen 9486 nn0ge0div 9495 zextle 9499 btwnnz 9502 suprzclex 9506 msqznn 9508 peano2uz2 9515 uzind 9519 fzind 9523 fnn0ind 9524 eluzuzle 9691 uzid 9697 uzneg 9702 uz11 9706 eluzp1m1 9707 eluzp1p1 9709 eluzaddi 9710 eluzsubi 9711 uzin 9716 uz3m2nn 9729 peano2uz 9739 nn0pzuz 9743 eluz2b2 9759 uz2mulcl 9764 eqreznegel 9770 lbzbi 9772 qre 9781 elpq 9805 zltaddlt1le 10164 elfz1eq 10192 fznlem 10198 fzen 10200 uzsubsubfz 10204 fzaddel 10216 fzsuc2 10236 fzp1disj 10237 fzrev 10241 elfz1b 10247 fzneuz 10258 fzp1nel 10261 elfz0fzfz0 10283 fz0fzelfz0 10284 fznn0sub2 10285 fz0fzdiffz0 10287 elfzmlbp 10289 difelfznle 10292 nelfzo 10309 elfzouz2 10319 fzo0n 10325 fzonlt0 10326 fzossrbm1 10332 fzo1fzo0n0 10344 elfzo0z 10345 fzofzim 10349 eluzgtdifelfzo 10363 fzossfzop1 10378 ssfzo12bi 10391 elfzomelpfzo 10397 fzosplitprm1 10400 fzostep1 10403 infssuzex 10413 flid 10464 flqbi2 10471 2tnp1ge0ge0 10481 flhalf 10482 fldiv4p1lem1div2 10485 fldiv4lem1div2uz2 10486 ceiqle 10495 uzsinds 10626 zsqcl2 10799 ccatsymb 11096 ccatval21sw 11099 lswccatn0lsw 11105 swrd0g 11151 swrdswrdlem 11195 swrdswrd 11196 swrdccatin2 11220 pfxccatin12lem2 11222 pfxccatin12lem3 11223 nn0abscl 11511 zmaxcl 11650 2zsupmax 11652 2zinfmin 11669 p1modz1 12220 evennn02n 12308 evennn2n 12309 ltoddhalfle 12319 bitsp1o 12379 dfgcd2 12450 algcvga 12488 isprm3 12555 dvdsnprmd 12562 sqnprm 12573 zgcdsq 12638 hashdvds 12658 fldivp1 12786 zgz 12811 4sqlem4 12830 4sqexercise1 12836 mulgval 13573 coskpi 15435 relogexp 15459 rplogbzexp 15541 zabsle1 15591 lgsne0 15630 gausslemma2dlem1a 15650 gausslemma2dlem3 15655 gausslemma2dlem4 15656 lgsquadlem1 15669 lgsquadlem2 15670 2lgslem1a1 15678 2lgslem1a2 15679 2sqlem2 15707 |
| Copyright terms: Public domain | W3C validator |