| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zre | Unicode version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9376 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-neg 8248 df-z 9375 |
| This theorem is referenced by: zcn 9379 zrei 9380 zssre 9381 elnn0z 9387 elnnz1 9397 peano2z 9410 zaddcl 9414 ztri3or0 9416 ztri3or 9417 zletric 9418 zlelttric 9419 zltnle 9420 zleloe 9421 zletr 9424 znnsub 9426 nzadd 9427 zltp1le 9429 zleltp1 9430 znn0sub 9440 zapne 9449 zdceq 9450 zdcle 9451 zdclt 9452 zltlen 9453 nn0ge0div 9462 zextle 9466 btwnnz 9469 suprzclex 9473 msqznn 9475 peano2uz2 9482 uzind 9486 fzind 9490 fnn0ind 9491 eluzuzle 9658 uzid 9664 uzneg 9669 uz11 9673 eluzp1m1 9674 eluzp1p1 9676 eluzaddi 9677 eluzsubi 9678 uzin 9683 uz3m2nn 9696 peano2uz 9706 nn0pzuz 9710 eluz2b2 9726 uz2mulcl 9731 eqreznegel 9737 lbzbi 9739 qre 9748 elpq 9772 zltaddlt1le 10131 elfz1eq 10159 fznlem 10165 fzen 10167 uzsubsubfz 10171 fzaddel 10183 fzsuc2 10203 fzp1disj 10204 fzrev 10208 elfz1b 10214 fzneuz 10225 fzp1nel 10228 elfz0fzfz0 10250 fz0fzelfz0 10251 fznn0sub2 10252 fz0fzdiffz0 10254 elfzmlbp 10256 difelfznle 10259 nelfzo 10276 elfzouz2 10286 fzo0n 10292 fzonlt0 10293 fzossrbm1 10299 fzo1fzo0n0 10309 elfzo0z 10310 fzofzim 10314 eluzgtdifelfzo 10328 fzossfzop1 10343 ssfzo12bi 10356 elfzomelpfzo 10362 fzosplitprm1 10365 fzostep1 10368 infssuzex 10378 flid 10429 flqbi2 10436 2tnp1ge0ge0 10446 flhalf 10447 fldiv4p1lem1div2 10450 fldiv4lem1div2uz2 10451 ceiqle 10460 uzsinds 10591 zsqcl2 10764 ccatsymb 11061 ccatval21sw 11064 lswccatn0lsw 11070 swrd0g 11116 nn0abscl 11429 zmaxcl 11568 2zsupmax 11570 2zinfmin 11587 p1modz1 12138 evennn02n 12226 evennn2n 12227 ltoddhalfle 12237 bitsp1o 12297 dfgcd2 12368 algcvga 12406 isprm3 12473 dvdsnprmd 12480 sqnprm 12491 zgcdsq 12556 hashdvds 12576 fldivp1 12704 zgz 12729 4sqlem4 12748 4sqexercise1 12754 mulgval 13491 coskpi 15353 relogexp 15377 rplogbzexp 15459 zabsle1 15509 lgsne0 15548 gausslemma2dlem1a 15568 gausslemma2dlem3 15573 gausslemma2dlem4 15574 lgsquadlem1 15587 lgsquadlem2 15588 2lgslem1a1 15596 2lgslem1a2 15597 2sqlem2 15625 |
| Copyright terms: Public domain | W3C validator |