| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zre | Unicode version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9448 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-neg 8320 df-z 9447 |
| This theorem is referenced by: zcn 9451 zrei 9452 zssre 9453 elnn0z 9459 elnnz1 9469 peano2z 9482 zaddcl 9486 ztri3or0 9488 ztri3or 9489 zletric 9490 zlelttric 9491 zltnle 9492 zleloe 9493 zletr 9496 znnsub 9498 nzadd 9499 zltp1le 9501 zleltp1 9502 znn0sub 9512 zapne 9521 zdceq 9522 zdcle 9523 zdclt 9524 zltlen 9525 nn0ge0div 9534 zextle 9538 btwnnz 9541 suprzclex 9545 msqznn 9547 peano2uz2 9554 uzind 9558 fzind 9562 fnn0ind 9563 eluzuzle 9730 uzid 9736 uzneg 9741 uz11 9745 eluzp1m1 9746 eluzp1p1 9748 eluzaddi 9749 eluzsubi 9750 uzin 9755 uz3m2nn 9768 peano2uz 9778 nn0pzuz 9782 eluz2b2 9798 uz2mulcl 9803 eqreznegel 9809 lbzbi 9811 qre 9820 elpq 9844 zltaddlt1le 10203 elfz1eq 10231 fznlem 10237 fzen 10239 uzsubsubfz 10243 fzaddel 10255 fzsuc2 10275 fzp1disj 10276 fzrev 10280 elfz1b 10286 fzneuz 10297 fzp1nel 10300 elfz0fzfz0 10322 fz0fzelfz0 10323 fznn0sub2 10324 fz0fzdiffz0 10326 elfzmlbp 10328 difelfznle 10331 nelfzo 10348 elfzouz2 10358 fzo0n 10364 fzonlt0 10365 fzossrbm1 10371 fzo1fzo0n0 10383 elfzo0z 10384 fzofzim 10388 eluzgtdifelfzo 10403 fzossfzop1 10418 ssfzo12bi 10431 elfzomelpfzo 10437 fzosplitprm1 10440 fzostep1 10443 infssuzex 10453 flid 10504 flqbi2 10511 2tnp1ge0ge0 10521 flhalf 10522 fldiv4p1lem1div2 10525 fldiv4lem1div2uz2 10526 ceiqle 10535 uzsinds 10666 zsqcl2 10839 ccatsymb 11137 ccatval21sw 11140 lswccatn0lsw 11146 swrd0g 11192 swrdswrdlem 11236 swrdswrd 11237 swrdccatin2 11261 pfxccatin12lem2 11263 pfxccatin12lem3 11264 nn0abscl 11596 zmaxcl 11735 2zsupmax 11737 2zinfmin 11754 p1modz1 12305 evennn02n 12393 evennn2n 12394 ltoddhalfle 12404 bitsp1o 12464 dfgcd2 12535 algcvga 12573 isprm3 12640 dvdsnprmd 12647 sqnprm 12658 zgcdsq 12723 hashdvds 12743 fldivp1 12871 zgz 12896 4sqlem4 12915 4sqexercise1 12921 mulgval 13659 coskpi 15522 relogexp 15546 rplogbzexp 15628 zabsle1 15678 lgsne0 15717 gausslemma2dlem1a 15737 gausslemma2dlem3 15742 gausslemma2dlem4 15743 lgsquadlem1 15756 lgsquadlem2 15757 2lgslem1a1 15765 2lgslem1a2 15766 2sqlem2 15794 |
| Copyright terms: Public domain | W3C validator |