![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zre | Unicode version |
Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
zre |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9319 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-neg 8193 df-z 9318 |
This theorem is referenced by: zcn 9322 zrei 9323 zssre 9324 elnn0z 9330 elnnz1 9340 peano2z 9353 zaddcl 9357 ztri3or0 9359 ztri3or 9360 zletric 9361 zlelttric 9362 zltnle 9363 zleloe 9364 zletr 9366 znnsub 9368 nzadd 9369 zltp1le 9371 zleltp1 9372 znn0sub 9382 zapne 9391 zdceq 9392 zdcle 9393 zdclt 9394 zltlen 9395 nn0ge0div 9404 zextle 9408 btwnnz 9411 suprzclex 9415 msqznn 9417 peano2uz2 9424 uzind 9428 fzind 9432 fnn0ind 9433 eluzuzle 9600 uzid 9606 uzneg 9611 uz11 9615 eluzp1m1 9616 eluzp1p1 9618 eluzaddi 9619 eluzsubi 9620 uzin 9625 uz3m2nn 9638 peano2uz 9648 nn0pzuz 9652 eluz2b2 9668 uz2mulcl 9673 eqreznegel 9679 lbzbi 9681 qre 9690 elpq 9714 zltaddlt1le 10073 elfz1eq 10101 fznlem 10107 fzen 10109 uzsubsubfz 10113 fzaddel 10125 fzsuc2 10145 fzp1disj 10146 fzrev 10150 elfz1b 10156 fzneuz 10167 fzp1nel 10170 elfz0fzfz0 10192 fz0fzelfz0 10193 fznn0sub2 10194 fz0fzdiffz0 10196 elfzmlbp 10198 difelfznle 10201 nelfzo 10218 elfzouz2 10228 fzonlt0 10234 fzossrbm1 10240 fzo1fzo0n0 10250 elfzo0z 10251 fzofzim 10255 eluzgtdifelfzo 10264 fzossfzop1 10279 ssfzo12bi 10292 elfzomelpfzo 10298 fzosplitprm1 10301 fzostep1 10304 flid 10353 flqbi2 10360 2tnp1ge0ge0 10370 flhalf 10371 fldiv4p1lem1div2 10374 fldiv4lem1div2uz2 10375 ceiqle 10384 uzsinds 10515 zsqcl2 10688 nn0abscl 11229 zmaxcl 11368 2zsupmax 11369 2zinfmin 11386 p1modz1 11937 evennn02n 12023 evennn2n 12024 ltoddhalfle 12034 infssuzex 12086 dfgcd2 12151 algcvga 12189 isprm3 12256 dvdsnprmd 12263 sqnprm 12274 zgcdsq 12339 hashdvds 12359 fldivp1 12486 zgz 12511 4sqlem4 12530 4sqexercise1 12536 mulgval 13192 coskpi 14983 relogexp 15007 rplogbzexp 15086 zabsle1 15115 lgsne0 15154 gausslemma2dlem1a 15174 gausslemma2dlem3 15179 gausslemma2dlem4 15180 lgsquadlem1 15191 2sqlem2 15202 |
Copyright terms: Public domain | W3C validator |