| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zre | Unicode version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9374 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-neg 8246 df-z 9373 |
| This theorem is referenced by: zcn 9377 zrei 9378 zssre 9379 elnn0z 9385 elnnz1 9395 peano2z 9408 zaddcl 9412 ztri3or0 9414 ztri3or 9415 zletric 9416 zlelttric 9417 zltnle 9418 zleloe 9419 zletr 9422 znnsub 9424 nzadd 9425 zltp1le 9427 zleltp1 9428 znn0sub 9438 zapne 9447 zdceq 9448 zdcle 9449 zdclt 9450 zltlen 9451 nn0ge0div 9460 zextle 9464 btwnnz 9467 suprzclex 9471 msqznn 9473 peano2uz2 9480 uzind 9484 fzind 9488 fnn0ind 9489 eluzuzle 9656 uzid 9662 uzneg 9667 uz11 9671 eluzp1m1 9672 eluzp1p1 9674 eluzaddi 9675 eluzsubi 9676 uzin 9681 uz3m2nn 9694 peano2uz 9704 nn0pzuz 9708 eluz2b2 9724 uz2mulcl 9729 eqreznegel 9735 lbzbi 9737 qre 9746 elpq 9770 zltaddlt1le 10129 elfz1eq 10157 fznlem 10163 fzen 10165 uzsubsubfz 10169 fzaddel 10181 fzsuc2 10201 fzp1disj 10202 fzrev 10206 elfz1b 10212 fzneuz 10223 fzp1nel 10226 elfz0fzfz0 10248 fz0fzelfz0 10249 fznn0sub2 10250 fz0fzdiffz0 10252 elfzmlbp 10254 difelfznle 10257 nelfzo 10274 elfzouz2 10284 fzo0n 10290 fzonlt0 10291 fzossrbm1 10297 fzo1fzo0n0 10307 elfzo0z 10308 fzofzim 10312 eluzgtdifelfzo 10326 fzossfzop1 10341 ssfzo12bi 10354 elfzomelpfzo 10360 fzosplitprm1 10363 fzostep1 10366 infssuzex 10376 flid 10427 flqbi2 10434 2tnp1ge0ge0 10444 flhalf 10445 fldiv4p1lem1div2 10448 fldiv4lem1div2uz2 10449 ceiqle 10458 uzsinds 10589 zsqcl2 10762 ccatsymb 11058 ccatval21sw 11061 lswccatn0lsw 11067 swrd0g 11113 nn0abscl 11396 zmaxcl 11535 2zsupmax 11537 2zinfmin 11554 p1modz1 12105 evennn02n 12193 evennn2n 12194 ltoddhalfle 12204 bitsp1o 12264 dfgcd2 12335 algcvga 12373 isprm3 12440 dvdsnprmd 12447 sqnprm 12458 zgcdsq 12523 hashdvds 12543 fldivp1 12671 zgz 12696 4sqlem4 12715 4sqexercise1 12721 mulgval 13458 coskpi 15320 relogexp 15344 rplogbzexp 15426 zabsle1 15476 lgsne0 15515 gausslemma2dlem1a 15535 gausslemma2dlem3 15540 gausslemma2dlem4 15541 lgsquadlem1 15554 lgsquadlem2 15555 2lgslem1a1 15563 2lgslem1a2 15564 2sqlem2 15592 |
| Copyright terms: Public domain | W3C validator |