![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zre | Unicode version |
Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
zre |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 8954 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 270 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-rex 2394 df-rab 2397 df-v 2657 df-un 3039 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-iota 5044 df-fv 5087 df-ov 5729 df-neg 7853 df-z 8953 |
This theorem is referenced by: zcn 8957 zrei 8958 zssre 8959 elnn0z 8965 elnnz1 8975 peano2z 8988 zaddcl 8992 ztri3or0 8994 ztri3or 8995 zletric 8996 zlelttric 8997 zltnle 8998 zleloe 8999 zletr 9001 znnsub 9003 nzadd 9004 zltp1le 9006 zleltp1 9007 znn0sub 9017 zapne 9023 zdceq 9024 zdcle 9025 zdclt 9026 zltlen 9027 nn0ge0div 9036 zextle 9040 btwnnz 9043 suprzclex 9047 msqznn 9049 peano2uz2 9056 uzind 9060 fzind 9064 fnn0ind 9065 eluzuzle 9230 uzid 9236 uzneg 9240 uz11 9244 eluzp1m1 9245 eluzp1p1 9247 eluzaddi 9248 eluzsubi 9249 uzin 9254 uz3m2nn 9264 peano2uz 9274 nn0pzuz 9278 eluz2b2 9293 uz2mulcl 9298 eqreznegel 9302 lbzbi 9304 qre 9313 zltaddlt1le 9676 elfz1eq 9702 fznlem 9708 fzen 9710 uzsubsubfz 9714 fzaddel 9726 fzsuc2 9746 fzp1disj 9747 fzrev 9751 elfz1b 9757 fzneuz 9768 fzp1nel 9771 elfz0fzfz0 9790 fz0fzelfz0 9791 fznn0sub2 9792 fz0fzdiffz0 9794 elfzmlbp 9796 difelfznle 9799 elfzouz2 9825 fzonlt0 9831 fzossrbm1 9837 fzo1fzo0n0 9847 elfzo0z 9848 fzofzim 9852 eluzgtdifelfzo 9861 fzossfzop1 9876 ssfzo12bi 9889 elfzomelpfzo 9895 fzosplitprm1 9898 fzostep1 9901 flid 9944 flqbi2 9951 2tnp1ge0ge0 9961 flhalf 9962 fldiv4p1lem1div2 9965 ceiqle 9973 uzsinds 10102 zsqcl2 10257 nn0abscl 10743 zmaxcl 10882 2zsupmax 10883 evennn02n 11421 evennn2n 11422 ltoddhalfle 11432 infssuzex 11484 dfgcd2 11542 algcvga 11572 isprm3 11639 dvdsnprmd 11646 sqnprm 11656 zgcdsq 11718 hashdvds 11736 |
Copyright terms: Public domain | W3C validator |