| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > suprzclex | Unicode version | ||
| Description: The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| suprzclex.ex | 
 | 
| suprzclex.ss | 
 | 
| Ref | Expression | 
|---|---|
| suprzclex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lttri3 8106 | 
. . . . . 6
 | |
| 2 | 1 | adantl 277 | 
. . . . 5
 | 
| 3 | suprzclex.ex | 
. . . . 5
 | |
| 4 | 2, 3 | supclti 7064 | 
. . . 4
 | 
| 5 | 4 | ltm1d 8959 | 
. . 3
 | 
| 6 | suprzclex.ss | 
. . . . 5
 | |
| 7 | zssre 9333 | 
. . . . 5
 | |
| 8 | 6, 7 | sstrdi 3195 | 
. . . 4
 | 
| 9 | peano2rem 8293 | 
. . . . 5
 | |
| 10 | 4, 9 | syl 14 | 
. . . 4
 | 
| 11 | 3, 8, 10 | suprlubex 8979 | 
. . 3
 | 
| 12 | 5, 11 | mpbid 147 | 
. 2
 | 
| 13 | 6 | adantr 276 | 
. . . . . . . . . 10
 | 
| 14 | 13 | sselda 3183 | 
. . . . . . . . 9
 | 
| 15 | 7, 14 | sselid 3181 | 
. . . . . . . 8
 | 
| 16 | 4 | adantr 276 | 
. . . . . . . . 9
 | 
| 17 | 16 | adantr 276 | 
. . . . . . . 8
 | 
| 18 | simprl 529 | 
. . . . . . . . . . . 12
 | |
| 19 | 13, 18 | sseldd 3184 | 
. . . . . . . . . . 11
 | 
| 20 | zre 9330 | 
. . . . . . . . . . 11
 | |
| 21 | 19, 20 | syl 14 | 
. . . . . . . . . 10
 | 
| 22 | peano2re 8162 | 
. . . . . . . . . 10
 | |
| 23 | 21, 22 | syl 14 | 
. . . . . . . . 9
 | 
| 24 | 23 | adantr 276 | 
. . . . . . . 8
 | 
| 25 | 3 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 26 | 8 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 27 | simpr 110 | 
. . . . . . . . 9
 | |
| 28 | 25, 26, 27 | suprubex 8978 | 
. . . . . . . 8
 | 
| 29 | simprr 531 | 
. . . . . . . . . 10
 | |
| 30 | 1red 8041 | 
. . . . . . . . . . 11
 | |
| 31 | 16, 30, 21 | ltsubaddd 8568 | 
. . . . . . . . . 10
 | 
| 32 | 29, 31 | mpbid 147 | 
. . . . . . . . 9
 | 
| 33 | 32 | adantr 276 | 
. . . . . . . 8
 | 
| 34 | 15, 17, 24, 28, 33 | lelttrd 8151 | 
. . . . . . 7
 | 
| 35 | 19 | adantr 276 | 
. . . . . . . 8
 | 
| 36 | zleltp1 9381 | 
. . . . . . . 8
 | |
| 37 | 14, 35, 36 | syl2anc 411 | 
. . . . . . 7
 | 
| 38 | 34, 37 | mpbird 167 | 
. . . . . 6
 | 
| 39 | 38 | ralrimiva 2570 | 
. . . . 5
 | 
| 40 | breq2 4037 | 
. . . . . . . . . . . . 13
 | |
| 41 | 40 | cbvrexv 2730 | 
. . . . . . . . . . . 12
 | 
| 42 | 41 | imbi2i 226 | 
. . . . . . . . . . 11
 | 
| 43 | 42 | ralbii 2503 | 
. . . . . . . . . 10
 | 
| 44 | 43 | anbi2i 457 | 
. . . . . . . . 9
 | 
| 45 | 44 | rexbii 2504 | 
. . . . . . . 8
 | 
| 46 | 3, 45 | sylib 122 | 
. . . . . . 7
 | 
| 47 | 46 | adantr 276 | 
. . . . . 6
 | 
| 48 | 13, 7 | sstrdi 3195 | 
. . . . . 6
 | 
| 49 | 47, 48, 21 | suprleubex 8981 | 
. . . . 5
 | 
| 50 | 39, 49 | mpbird 167 | 
. . . 4
 | 
| 51 | 47, 48, 18 | suprubex 8978 | 
. . . 4
 | 
| 52 | 16, 21 | letri3d 8142 | 
. . . 4
 | 
| 53 | 50, 51, 52 | mpbir2and 946 | 
. . 3
 | 
| 54 | 53, 18 | eqeltrd 2273 | 
. 2
 | 
| 55 | 12, 54 | rexlimddv 2619 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 | 
| This theorem is referenced by: infssuzcldc 10325 gcddvds 12130 | 
| Copyright terms: Public domain | W3C validator |