| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprzclex | Unicode version | ||
| Description: The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.) |
| Ref | Expression |
|---|---|
| suprzclex.ex |
|
| suprzclex.ss |
|
| Ref | Expression |
|---|---|
| suprzclex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 8123 |
. . . . . 6
| |
| 2 | 1 | adantl 277 |
. . . . 5
|
| 3 | suprzclex.ex |
. . . . 5
| |
| 4 | 2, 3 | supclti 7073 |
. . . 4
|
| 5 | 4 | ltm1d 8976 |
. . 3
|
| 6 | suprzclex.ss |
. . . . 5
| |
| 7 | zssre 9350 |
. . . . 5
| |
| 8 | 6, 7 | sstrdi 3196 |
. . . 4
|
| 9 | peano2rem 8310 |
. . . . 5
| |
| 10 | 4, 9 | syl 14 |
. . . 4
|
| 11 | 3, 8, 10 | suprlubex 8996 |
. . 3
|
| 12 | 5, 11 | mpbid 147 |
. 2
|
| 13 | 6 | adantr 276 |
. . . . . . . . . 10
|
| 14 | 13 | sselda 3184 |
. . . . . . . . 9
|
| 15 | 7, 14 | sselid 3182 |
. . . . . . . 8
|
| 16 | 4 | adantr 276 |
. . . . . . . . 9
|
| 17 | 16 | adantr 276 |
. . . . . . . 8
|
| 18 | simprl 529 |
. . . . . . . . . . . 12
| |
| 19 | 13, 18 | sseldd 3185 |
. . . . . . . . . . 11
|
| 20 | zre 9347 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | syl 14 |
. . . . . . . . . 10
|
| 22 | peano2re 8179 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | syl 14 |
. . . . . . . . 9
|
| 24 | 23 | adantr 276 |
. . . . . . . 8
|
| 25 | 3 | ad2antrr 488 |
. . . . . . . . 9
|
| 26 | 8 | ad2antrr 488 |
. . . . . . . . 9
|
| 27 | simpr 110 |
. . . . . . . . 9
| |
| 28 | 25, 26, 27 | suprubex 8995 |
. . . . . . . 8
|
| 29 | simprr 531 |
. . . . . . . . . 10
| |
| 30 | 1red 8058 |
. . . . . . . . . . 11
| |
| 31 | 16, 30, 21 | ltsubaddd 8585 |
. . . . . . . . . 10
|
| 32 | 29, 31 | mpbid 147 |
. . . . . . . . 9
|
| 33 | 32 | adantr 276 |
. . . . . . . 8
|
| 34 | 15, 17, 24, 28, 33 | lelttrd 8168 |
. . . . . . 7
|
| 35 | 19 | adantr 276 |
. . . . . . . 8
|
| 36 | zleltp1 9398 |
. . . . . . . 8
| |
| 37 | 14, 35, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | 34, 37 | mpbird 167 |
. . . . . 6
|
| 39 | 38 | ralrimiva 2570 |
. . . . 5
|
| 40 | breq2 4038 |
. . . . . . . . . . . . 13
| |
| 41 | 40 | cbvrexv 2730 |
. . . . . . . . . . . 12
|
| 42 | 41 | imbi2i 226 |
. . . . . . . . . . 11
|
| 43 | 42 | ralbii 2503 |
. . . . . . . . . 10
|
| 44 | 43 | anbi2i 457 |
. . . . . . . . 9
|
| 45 | 44 | rexbii 2504 |
. . . . . . . 8
|
| 46 | 3, 45 | sylib 122 |
. . . . . . 7
|
| 47 | 46 | adantr 276 |
. . . . . 6
|
| 48 | 13, 7 | sstrdi 3196 |
. . . . . 6
|
| 49 | 47, 48, 21 | suprleubex 8998 |
. . . . 5
|
| 50 | 39, 49 | mpbird 167 |
. . . 4
|
| 51 | 47, 48, 18 | suprubex 8995 |
. . . 4
|
| 52 | 16, 21 | letri3d 8159 |
. . . 4
|
| 53 | 50, 51, 52 | mpbir2and 946 |
. . 3
|
| 54 | 53, 18 | eqeltrd 2273 |
. 2
|
| 55 | 12, 54 | rexlimddv 2619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: infssuzcldc 10342 gcddvds 12155 |
| Copyright terms: Public domain | W3C validator |