ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzclex Unicode version

Theorem suprzclex 9171
Description: The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
suprzclex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
suprzclex.ss  |-  ( ph  ->  A  C_  ZZ )
Assertion
Ref Expression
suprzclex  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
Distinct variable groups:    x, A, y, z    ph, x, z
Allowed substitution hint:    ph( y)

Proof of Theorem suprzclex
Dummy variables  w  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7866 . . . . . 6  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 275 . . . . 5  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 suprzclex.ex . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
42, 3supclti 6891 . . . 4  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
54ltm1d 8712 . . 3  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  ) )
6 suprzclex.ss . . . . 5  |-  ( ph  ->  A  C_  ZZ )
7 zssre 9083 . . . . 5  |-  ZZ  C_  RR
86, 7sstrdi 3112 . . . 4  |-  ( ph  ->  A  C_  RR )
9 peano2rem 8051 . . . . 5  |-  ( sup ( A ,  RR ,  <  )  e.  RR  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
104, 9syl 14 . . . 4  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
113, 8, 10suprlubex 8732 . . 3  |-  ( ph  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )
125, 11mpbid 146 . 2  |-  ( ph  ->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
)
136adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A  C_  ZZ )
1413sselda 3100 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  e.  ZZ )
157, 14sseldi 3098 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  e.  RR )
164adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  RR )
1716adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
18 simprl 521 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  A )
1913, 18sseldd 3101 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  ZZ )
20 zre 9080 . . . . . . . . . . 11  |-  ( z  e.  ZZ  ->  z  e.  RR )
2119, 20syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  RR )
22 peano2re 7920 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
z  +  1 )  e.  RR )
2321, 22syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( z  +  1 )  e.  RR )
2423adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  (
z  +  1 )  e.  RR )
253ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
268ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  A  C_  RR )
27 simpr 109 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  e.  A )
2825, 26, 27suprubex 8731 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
29 simprr 522 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  z )
30 1red 7803 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  1  e.  RR )
3116, 30, 21ltsubaddd 8325 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  z  <->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) ) )
3229, 31mpbid 146 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3332adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3415, 17, 24, 28, 33lelttrd 7909 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  <  ( z  +  1 ) )
3519adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  z  e.  ZZ )
36 zleltp1 9131 . . . . . . . 8  |-  ( ( w  e.  ZZ  /\  z  e.  ZZ )  ->  ( w  <_  z  <->  w  <  ( z  +  1 ) ) )
3714, 35, 36syl2anc 409 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  (
w  <_  z  <->  w  <  ( z  +  1 ) ) )
3834, 37mpbird 166 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  <_  z )
3938ralrimiva 2508 . . . . 5  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A. w  e.  A  w  <_  z )
40 breq2 3939 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
y  <  z  <->  y  <  w ) )
4140cbvrexv 2658 . . . . . . . . . . . 12  |-  ( E. z  e.  A  y  <  z  <->  E. w  e.  A  y  <  w )
4241imbi2i 225 . . . . . . . . . . 11  |-  ( ( y  <  x  ->  E. z  e.  A  y  <  z )  <->  ( y  <  x  ->  E. w  e.  A  y  <  w ) )
4342ralbii 2444 . . . . . . . . . 10  |-  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z )  <->  A. y  e.  RR  ( y  < 
x  ->  E. w  e.  A  y  <  w ) )
4443anbi2i 453 . . . . . . . . 9  |-  ( ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  <-> 
( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. w  e.  A  y  <  w ) ) )
4544rexbii 2445 . . . . . . . 8  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. w  e.  A  y  <  w ) ) )
463, 45sylib 121 . . . . . . 7  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. w  e.  A  y  <  w ) ) )
4746adantr 274 . . . . . 6  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. w  e.  A  y  <  w ) ) )
4813, 7sstrdi 3112 . . . . . 6  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A  C_  RR )
4947, 48, 21suprleubex 8734 . . . . 5  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
5039, 49mpbird 166 . . . 4  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <_  z )
5147, 48, 18suprubex 8731 . . . 4  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  <_  sup ( A ,  RR ,  <  ) )
5216, 21letri3d 7901 . . . 4  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  =  z  <->  ( sup ( A ,  RR ,  <  )  <_  z  /\  z  <_  sup ( A ,  RR ,  <  ) ) ) )
5350, 51, 52mpbir2and 929 . . 3  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  z )
5453, 18eqeltrd 2217 . 2  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  A )
5512, 54rexlimddv 2557 1  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418    C_ wss 3074   class class class wbr 3935  (class class class)co 5780   supcsup 6875   RRcr 7641   1c1 7643    + caddc 7645    < clt 7822    <_ cle 7823    - cmin 7955   ZZcz 9076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-addcom 7742  ax-addass 7744  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-0id 7750  ax-rnegex 7751  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-apti 7757  ax-pre-ltadd 7758
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-br 3936  df-opab 3996  df-id 4221  df-po 4224  df-iso 4225  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-iota 5094  df-fun 5131  df-fv 5137  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-sup 6877  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-inn 8743  df-n0 9000  df-z 9077
This theorem is referenced by:  infssuzcldc  11673  gcddvds  11681
  Copyright terms: Public domain W3C validator