ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzclex Unicode version

Theorem suprzclex 9506
Description: The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
suprzclex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
suprzclex.ss  |-  ( ph  ->  A  C_  ZZ )
Assertion
Ref Expression
suprzclex  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
Distinct variable groups:    x, A, y, z    ph, x, z
Allowed substitution hint:    ph( y)

Proof of Theorem suprzclex
Dummy variables  w  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8187 . . . . . 6  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 277 . . . . 5  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 suprzclex.ex . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
42, 3supclti 7126 . . . 4  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
54ltm1d 9040 . . 3  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  ) )
6 suprzclex.ss . . . . 5  |-  ( ph  ->  A  C_  ZZ )
7 zssre 9414 . . . . 5  |-  ZZ  C_  RR
86, 7sstrdi 3213 . . . 4  |-  ( ph  ->  A  C_  RR )
9 peano2rem 8374 . . . . 5  |-  ( sup ( A ,  RR ,  <  )  e.  RR  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
104, 9syl 14 . . . 4  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
113, 8, 10suprlubex 9060 . . 3  |-  ( ph  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )
125, 11mpbid 147 . 2  |-  ( ph  ->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
)
136adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A  C_  ZZ )
1413sselda 3201 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  e.  ZZ )
157, 14sselid 3199 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  e.  RR )
164adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  RR )
1716adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
18 simprl 529 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  A )
1913, 18sseldd 3202 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  ZZ )
20 zre 9411 . . . . . . . . . . 11  |-  ( z  e.  ZZ  ->  z  e.  RR )
2119, 20syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  RR )
22 peano2re 8243 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
z  +  1 )  e.  RR )
2321, 22syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( z  +  1 )  e.  RR )
2423adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  (
z  +  1 )  e.  RR )
253ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
268ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  A  C_  RR )
27 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  e.  A )
2825, 26, 27suprubex 9059 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
29 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  z )
30 1red 8122 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  1  e.  RR )
3116, 30, 21ltsubaddd 8649 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  z  <->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) ) )
3229, 31mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3332adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3415, 17, 24, 28, 33lelttrd 8232 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  <  ( z  +  1 ) )
3519adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  z  e.  ZZ )
36 zleltp1 9463 . . . . . . . 8  |-  ( ( w  e.  ZZ  /\  z  e.  ZZ )  ->  ( w  <_  z  <->  w  <  ( z  +  1 ) ) )
3714, 35, 36syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  (
w  <_  z  <->  w  <  ( z  +  1 ) ) )
3834, 37mpbird 167 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  <_  z )
3938ralrimiva 2581 . . . . 5  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A. w  e.  A  w  <_  z )
40 breq2 4063 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
y  <  z  <->  y  <  w ) )
4140cbvrexv 2743 . . . . . . . . . . . 12  |-  ( E. z  e.  A  y  <  z  <->  E. w  e.  A  y  <  w )
4241imbi2i 226 . . . . . . . . . . 11  |-  ( ( y  <  x  ->  E. z  e.  A  y  <  z )  <->  ( y  <  x  ->  E. w  e.  A  y  <  w ) )
4342ralbii 2514 . . . . . . . . . 10  |-  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z )  <->  A. y  e.  RR  ( y  < 
x  ->  E. w  e.  A  y  <  w ) )
4443anbi2i 457 . . . . . . . . 9  |-  ( ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  <-> 
( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. w  e.  A  y  <  w ) ) )
4544rexbii 2515 . . . . . . . 8  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. w  e.  A  y  <  w ) ) )
463, 45sylib 122 . . . . . . 7  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. w  e.  A  y  <  w ) ) )
4746adantr 276 . . . . . 6  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. w  e.  A  y  <  w ) ) )
4813, 7sstrdi 3213 . . . . . 6  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A  C_  RR )
4947, 48, 21suprleubex 9062 . . . . 5  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
5039, 49mpbird 167 . . . 4  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <_  z )
5147, 48, 18suprubex 9059 . . . 4  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  <_  sup ( A ,  RR ,  <  ) )
5216, 21letri3d 8223 . . . 4  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  =  z  <->  ( sup ( A ,  RR ,  <  )  <_  z  /\  z  <_  sup ( A ,  RR ,  <  ) ) ) )
5350, 51, 52mpbir2and 947 . . 3  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  z )
5453, 18eqeltrd 2284 . 2  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  A )
5512, 54rexlimddv 2630 1  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487    C_ wss 3174   class class class wbr 4059  (class class class)co 5967   supcsup 7110   RRcr 7959   1c1 7961    + caddc 7963    < clt 8142    <_ cle 8143    - cmin 8278   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408
This theorem is referenced by:  infssuzcldc  10415  gcddvds  12399
  Copyright terms: Public domain W3C validator