ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzclex Unicode version

Theorem suprzclex 9545
Description: The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
suprzclex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
suprzclex.ss  |-  ( ph  ->  A  C_  ZZ )
Assertion
Ref Expression
suprzclex  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
Distinct variable groups:    x, A, y, z    ph, x, z
Allowed substitution hint:    ph( y)

Proof of Theorem suprzclex
Dummy variables  w  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8226 . . . . . 6  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 277 . . . . 5  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 suprzclex.ex . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
42, 3supclti 7165 . . . 4  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
54ltm1d 9079 . . 3  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  ) )
6 suprzclex.ss . . . . 5  |-  ( ph  ->  A  C_  ZZ )
7 zssre 9453 . . . . 5  |-  ZZ  C_  RR
86, 7sstrdi 3236 . . . 4  |-  ( ph  ->  A  C_  RR )
9 peano2rem 8413 . . . . 5  |-  ( sup ( A ,  RR ,  <  )  e.  RR  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
104, 9syl 14 . . . 4  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
113, 8, 10suprlubex 9099 . . 3  |-  ( ph  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )
125, 11mpbid 147 . 2  |-  ( ph  ->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
)
136adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A  C_  ZZ )
1413sselda 3224 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  e.  ZZ )
157, 14sselid 3222 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  e.  RR )
164adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  RR )
1716adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
18 simprl 529 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  A )
1913, 18sseldd 3225 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  ZZ )
20 zre 9450 . . . . . . . . . . 11  |-  ( z  e.  ZZ  ->  z  e.  RR )
2119, 20syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  RR )
22 peano2re 8282 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
z  +  1 )  e.  RR )
2321, 22syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( z  +  1 )  e.  RR )
2423adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  (
z  +  1 )  e.  RR )
253ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
268ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  A  C_  RR )
27 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  e.  A )
2825, 26, 27suprubex 9098 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
29 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  z )
30 1red 8161 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  1  e.  RR )
3116, 30, 21ltsubaddd 8688 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  z  <->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) ) )
3229, 31mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3332adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3415, 17, 24, 28, 33lelttrd 8271 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  <  ( z  +  1 ) )
3519adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  z  e.  ZZ )
36 zleltp1 9502 . . . . . . . 8  |-  ( ( w  e.  ZZ  /\  z  e.  ZZ )  ->  ( w  <_  z  <->  w  <  ( z  +  1 ) ) )
3714, 35, 36syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  (
w  <_  z  <->  w  <  ( z  +  1 ) ) )
3834, 37mpbird 167 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  A  /\  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )  /\  w  e.  A )  ->  w  <_  z )
3938ralrimiva 2603 . . . . 5  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A. w  e.  A  w  <_  z )
40 breq2 4087 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
y  <  z  <->  y  <  w ) )
4140cbvrexv 2766 . . . . . . . . . . . 12  |-  ( E. z  e.  A  y  <  z  <->  E. w  e.  A  y  <  w )
4241imbi2i 226 . . . . . . . . . . 11  |-  ( ( y  <  x  ->  E. z  e.  A  y  <  z )  <->  ( y  <  x  ->  E. w  e.  A  y  <  w ) )
4342ralbii 2536 . . . . . . . . . 10  |-  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z )  <->  A. y  e.  RR  ( y  < 
x  ->  E. w  e.  A  y  <  w ) )
4443anbi2i 457 . . . . . . . . 9  |-  ( ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  <-> 
( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. w  e.  A  y  <  w ) ) )
4544rexbii 2537 . . . . . . . 8  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. w  e.  A  y  <  w ) ) )
463, 45sylib 122 . . . . . . 7  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. w  e.  A  y  <  w ) ) )
4746adantr 276 . . . . . 6  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. w  e.  A  y  <  w ) ) )
4813, 7sstrdi 3236 . . . . . 6  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A  C_  RR )
4947, 48, 21suprleubex 9101 . . . . 5  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
5039, 49mpbird 167 . . . 4  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <_  z )
5147, 48, 18suprubex 9098 . . . 4  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  <_  sup ( A ,  RR ,  <  ) )
5216, 21letri3d 8262 . . . 4  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  =  z  <->  ( sup ( A ,  RR ,  <  )  <_  z  /\  z  <_  sup ( A ,  RR ,  <  ) ) ) )
5350, 51, 52mpbir2and 950 . . 3  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  z )
5453, 18eqeltrd 2306 . 2  |-  ( (
ph  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  A )
5512, 54rexlimddv 2653 1  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   class class class wbr 4083  (class class class)co 6001   supcsup 7149   RRcr 7998   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182    - cmin 8317   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by:  infssuzcldc  10455  gcddvds  12484
  Copyright terms: Public domain W3C validator