ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopovsymg GIF version

Theorem ecopovsymg 6612
Description: Assuming the operation 𝐹 is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by Jim Kingdon, 1-Sep-2019.)
Hypotheses
Ref Expression
ecopopr.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
ecopoprg.com ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
ecopovsymg (𝐴 𝐵𝐵 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢, +   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecopovsymg
Dummy variables 𝑓 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
2 opabssxp 4685 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
31, 2eqsstri 3179 . . . 4 ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
43brel 4663 . . 3 (𝐴 𝐵 → (𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆)))
5 eqid 2170 . . . 4 (𝑆 × 𝑆) = (𝑆 × 𝑆)
6 breq1 3992 . . . . 5 (⟨𝑓, 𝑔⟩ = 𝐴 → (⟨𝑓, 𝑔, 𝑡⟩ ↔ 𝐴 , 𝑡⟩))
7 breq2 3993 . . . . 5 (⟨𝑓, 𝑔⟩ = 𝐴 → (⟨, 𝑡𝑓, 𝑔⟩ ↔ ⟨, 𝑡 𝐴))
86, 7bibi12d 234 . . . 4 (⟨𝑓, 𝑔⟩ = 𝐴 → ((⟨𝑓, 𝑔, 𝑡⟩ ↔ ⟨, 𝑡𝑓, 𝑔⟩) ↔ (𝐴 , 𝑡⟩ ↔ ⟨, 𝑡 𝐴)))
9 breq2 3993 . . . . 5 (⟨, 𝑡⟩ = 𝐵 → (𝐴 , 𝑡⟩ ↔ 𝐴 𝐵))
10 breq1 3992 . . . . 5 (⟨, 𝑡⟩ = 𝐵 → (⟨, 𝑡 𝐴𝐵 𝐴))
119, 10bibi12d 234 . . . 4 (⟨, 𝑡⟩ = 𝐵 → ((𝐴 , 𝑡⟩ ↔ ⟨, 𝑡 𝐴) ↔ (𝐴 𝐵𝐵 𝐴)))
12 ecopoprg.com . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1312adantl 275 . . . . . . . 8 ((((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
14 simpll 524 . . . . . . . 8 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → 𝑓𝑆)
15 simprr 527 . . . . . . . 8 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → 𝑡𝑆)
1613, 14, 15caovcomd 6009 . . . . . . 7 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (𝑓 + 𝑡) = (𝑡 + 𝑓))
17 simplr 525 . . . . . . . 8 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → 𝑔𝑆)
18 simprl 526 . . . . . . . 8 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → 𝑆)
1913, 17, 18caovcomd 6009 . . . . . . 7 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (𝑔 + ) = ( + 𝑔))
2016, 19eqeq12d 2185 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → ((𝑓 + 𝑡) = (𝑔 + ) ↔ (𝑡 + 𝑓) = ( + 𝑔)))
21 eqcom 2172 . . . . . 6 ((𝑡 + 𝑓) = ( + 𝑔) ↔ ( + 𝑔) = (𝑡 + 𝑓))
2220, 21bitrdi 195 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → ((𝑓 + 𝑡) = (𝑔 + ) ↔ ( + 𝑔) = (𝑡 + 𝑓)))
231ecopoveq 6608 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ (𝑓 + 𝑡) = (𝑔 + )))
241ecopoveq 6608 . . . . . 6 (((𝑆𝑡𝑆) ∧ (𝑓𝑆𝑔𝑆)) → (⟨, 𝑡𝑓, 𝑔⟩ ↔ ( + 𝑔) = (𝑡 + 𝑓)))
2524ancoms 266 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨, 𝑡𝑓, 𝑔⟩ ↔ ( + 𝑔) = (𝑡 + 𝑓)))
2622, 23, 253bitr4d 219 . . . 4 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ ⟨, 𝑡𝑓, 𝑔⟩))
275, 8, 11, 262optocl 4688 . . 3 ((𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆)) → (𝐴 𝐵𝐵 𝐴))
284, 27syl 14 . 2 (𝐴 𝐵 → (𝐴 𝐵𝐵 𝐴))
2928ibi 175 1 (𝐴 𝐵𝐵 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  cop 3586   class class class wbr 3989  {copab 4049   × cxp 4609  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  ecopoverg  6614
  Copyright terms: Public domain W3C validator