ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumadd GIF version

Theorem fsumadd 11552
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumadd.1 (𝜑𝐴 ∈ Fin)
fsumadd.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumadd.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumadd (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumadd
Dummy variables 𝑓 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 00id 8162 . . . . 5 (0 + 0) = 0
2 sum0 11534 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
3 sum0 11534 . . . . . 6 Σ𝑘 ∈ ∅ 𝐶 = 0
42, 3oveq12i 5931 . . . . 5 𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶) = (0 + 0)
5 sum0 11534 . . . . 5 Σ𝑘 ∈ ∅ (𝐵 + 𝐶) = 0
61, 4, 53eqtr4ri 2225 . . . 4 Σ𝑘 ∈ ∅ (𝐵 + 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶)
7 sumeq1 11501 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = Σ𝑘 ∈ ∅ (𝐵 + 𝐶))
8 sumeq1 11501 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
9 sumeq1 11501 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
108, 9oveq12d 5937 . . . 4 (𝐴 = ∅ → (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶))
116, 7, 103eqtr4a 2252 . . 3 (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
1211a1i 9 . 2 (𝜑 → (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
13 simprl 529 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
14 nnuz 9631 . . . . . . . . 9 ℕ = (ℤ‘1)
1513, 14eleqtrdi 2286 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
16 eqid 2193 . . . . . . . . . 10 (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))
17 breq1 4033 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑛 ≤ (♯‘𝐴)))
18 fveq2 5555 . . . . . . . . . . 11 (𝑗 = 𝑛 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛))
1917, 18ifbieq1d 3580 . . . . . . . . . 10 (𝑗 = 𝑛 → if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))
20 elnnuz 9632 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
2120biimpri 133 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
2221adantl 277 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
23 fsumadd.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2423adantlr 477 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2524fmpttd 5714 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
26 simprr 531 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
27 f1of 5501 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2826, 27syl 14 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
29 fco 5420 . . . . . . . . . . . . . 14 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
3025, 28, 29syl2anc 411 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
3130ad2antrr 488 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
32 1zzd 9347 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
3313ad2antrr 488 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
3433nnzd 9441 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
35 eluzelz 9604 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℤ)
3635ad2antlr 489 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 𝑛 ∈ ℤ)
3732, 34, 363jca 1179 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑛 ∈ ℤ))
38 eluzle 9607 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘1) → 1 ≤ 𝑛)
3938ad2antlr 489 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 1 ≤ 𝑛)
40 simpr 110 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 𝑛 ≤ (♯‘𝐴))
4139, 40jca 306 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (1 ≤ 𝑛𝑛 ≤ (♯‘𝐴)))
42 elfz2 10084 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(♯‘𝐴)) ↔ ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (1 ≤ 𝑛𝑛 ≤ (♯‘𝐴))))
4337, 41, 42sylanbrc 417 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 𝑛 ∈ (1...(♯‘𝐴)))
4431, 43ffvelcdmd 5695 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
45 0cnd 8014 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → 0 ∈ ℂ)
4622nnzd 9441 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℤ)
4713adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℕ)
4847nnzd 9441 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℤ)
49 zdcle 9396 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑛 ≤ (♯‘𝐴))
5046, 48, 49syl2anc 411 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛 ≤ (♯‘𝐴))
5144, 45, 50ifcldadc 3587 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) ∈ ℂ)
5216, 19, 22, 51fvmptd3 5652 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))‘𝑛) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))
5352, 51eqeltrd 2270 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))‘𝑛) ∈ ℂ)
54 eqid 2193 . . . . . . . . . 10 (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))
55 fveq2 5555 . . . . . . . . . . 11 (𝑗 = 𝑛 → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗) = (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛))
5617, 55ifbieq1d 3580 . . . . . . . . . 10 (𝑗 = 𝑛 → if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0))
57 fsumadd.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
5857adantlr 477 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
5958fmpttd 5714 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
6059ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
6128ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
62 fco 5420 . . . . . . . . . . . . 13 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
6360, 61, 62syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
6463, 43ffvelcdmd 5695 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ)
6564, 45, 50ifcldadc 3587 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0) ∈ ℂ)
6654, 56, 22, 65fvmptd3 5652 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))‘𝑛) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0))
6766, 65eqeltrd 2270 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))‘𝑛) ∈ ℂ)
68 simpll 527 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
6928ffvelcdmda 5694 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
70 simpr 110 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → 𝑘𝐴)
7123, 57addcld 8041 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℂ)
72 eqid 2193 . . . . . . . . . . . . . . . . . . 19 (𝑘𝐴 ↦ (𝐵 + 𝐶)) = (𝑘𝐴 ↦ (𝐵 + 𝐶))
7372fvmpt2 5642 . . . . . . . . . . . . . . . . . 18 ((𝑘𝐴 ∧ (𝐵 + 𝐶) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
7470, 71, 73syl2anc 411 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
75 eqid 2193 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
7675fvmpt2 5642 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
7770, 23, 76syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
78 eqid 2193 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
7978fvmpt2 5642 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝐴𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
8070, 57, 79syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
8177, 80oveq12d 5937 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) = (𝐵 + 𝐶))
8274, 81eqtr4d 2229 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
8382ralrimiva 2567 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
8483ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
85 nffvmpt1 5566 . . . . . . . . . . . . . . . 16 𝑘((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛))
86 nffvmpt1 5566 . . . . . . . . . . . . . . . . 17 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
87 nfcv 2336 . . . . . . . . . . . . . . . . 17 𝑘 +
88 nffvmpt1 5566 . . . . . . . . . . . . . . . . 17 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛))
8986, 87, 88nfov 5949 . . . . . . . . . . . . . . . 16 𝑘(((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))
9085, 89nfeq 2344 . . . . . . . . . . . . . . 15 𝑘((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))
91 fveq2 5555 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
92 fveq2 5555 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
93 fveq2 5555 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
9492, 93oveq12d 5937 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
9591, 94eqeq12d 2208 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
9690, 95rspc 2859 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
9769, 84, 96sylc 62 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
98 fvco3 5629 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
9928, 98sylan 283 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
100 fvco3 5629 . . . . . . . . . . . . . . 15 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
10128, 100sylan 283 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
102 fvco3 5629 . . . . . . . . . . . . . . 15 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
10328, 102sylan 283 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
104101, 103oveq12d 5937 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
10597, 99, 1043eqtr4d 2236 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
10668, 43, 105syl2anc 411 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
10740iftrued 3565 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛))
10840iftrued 3565 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛))
10940iftrued 3565 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0) = (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛))
110108, 109oveq12d 5937 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
111106, 107, 1103eqtr4d 2236 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))
1121eqcomi 2197 . . . . . . . . . . 11 0 = (0 + 0)
113 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → ¬ 𝑛 ≤ (♯‘𝐴))
114113iffalsed 3568 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = 0)
115113iffalsed 3568 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) = 0)
116113iffalsed 3568 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0) = 0)
117115, 116oveq12d 5937 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)) = (0 + 0))
118112, 114, 1173eqtr4a 2252 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))
119 exmiddc 837 . . . . . . . . . . 11 (DECID 𝑛 ≤ (♯‘𝐴) → (𝑛 ≤ (♯‘𝐴) ∨ ¬ 𝑛 ≤ (♯‘𝐴)))
12050, 119syl 14 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → (𝑛 ≤ (♯‘𝐴) ∨ ¬ 𝑛 ≤ (♯‘𝐴)))
121111, 118, 120mpjaodan 799 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))
122 eqid 2193 . . . . . . . . . 10 (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))
123 fveq2 5555 . . . . . . . . . . 11 (𝑗 = 𝑛 → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗) = (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛))
12417, 123ifbieq1d 3580 . . . . . . . . . 10 (𝑗 = 𝑛 → if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0))
12571fmpttd 5714 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
126125ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
127 fco 5420 . . . . . . . . . . . . 13 (((𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
128126, 61, 127syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
129128, 43ffvelcdmd 5695 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) ∈ ℂ)
130129, 45, 50ifcldadc 3587 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) ∈ ℂ)
131122, 124, 22, 130fvmptd3 5652 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))‘𝑛) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0))
13252, 66oveq12d 5937 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → (((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))‘𝑛) + ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))‘𝑛)) = (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))
133121, 131, 1323eqtr4d 2236 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))‘𝑛) = (((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))‘𝑛) + ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))‘𝑛)))
13415, 53, 67, 133ser3add 10596 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)) = ((seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)) + (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴))))
135 fveq2 5555 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
13624, 58addcld 8041 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → (𝐵 + 𝐶) ∈ ℂ)
137136fmpttd 5714 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
138137ffvelcdmda 5694 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) ∈ ℂ)
139135, 13, 26, 138, 99fsum3 11533 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))
140 breq1 4033 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑗 ≤ (♯‘𝐴)))
141 fveq2 5555 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗))
142140, 141ifbieq1d 3580 . . . . . . . . . . 11 (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))
143142cbvmptv 4126 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))
144 seqeq3 10526 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))))
145143, 144ax-mp 5 . . . . . . . . 9 seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)))
146145fveq1i 5556 . . . . . . . 8 (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴))
147139, 146eqtrdi 2242 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)))
148 fveq2 5555 . . . . . . . . . 10 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
14925ffvelcdmda 5694 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
150148, 13, 26, 149, 101fsum3 11533 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))
151 fveq2 5555 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗))
152140, 151ifbieq1d 3580 . . . . . . . . . . . 12 (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) = if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))
153152cbvmptv 4126 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))
154 seqeq3 10526 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))))
155153, 154ax-mp 5 . . . . . . . . . 10 seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)))
156155fveq1i 5556 . . . . . . . . 9 (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴))
157150, 156eqtrdi 2242 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)))
158 fveq2 5555 . . . . . . . . . 10 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
15959ffvelcdmda 5694 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
160158, 13, 26, 159, 103fsum3 11533 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))
161 fveq2 5555 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗))
162140, 161ifbieq1d 3580 . . . . . . . . . . . 12 (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0) = if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))
163162cbvmptv 4126 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))
164 seqeq3 10526 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))))
165163, 164ax-mp 5 . . . . . . . . . 10 seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)))
166165fveq1i 5556 . . . . . . . . 9 (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴))
167160, 166eqtrdi 2242 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)))
168157, 167oveq12d 5937 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)) + (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴))))
169134, 147, 1683eqtr4d 2236 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
17071ralrimiva 2567 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 (𝐵 + 𝐶) ∈ ℂ)
171 sumfct 11520 . . . . . . . 8 (∀𝑘𝐴 (𝐵 + 𝐶) ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘𝐴 (𝐵 + 𝐶))
172170, 171syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘𝐴 (𝐵 + 𝐶))
173172adantr 276 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘𝐴 (𝐵 + 𝐶))
17423ralrimiva 2567 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
175 sumfct 11520 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
176174, 175syl 14 . . . . . . . 8 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
17757ralrimiva 2567 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
178 sumfct 11520 . . . . . . . . 9 (∀𝑘𝐴 𝐶 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
179177, 178syl 14 . . . . . . . 8 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
180176, 179oveq12d 5937 . . . . . . 7 (𝜑 → (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
181180adantr 276 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
182169, 173, 1813eqtr3d 2234 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
183182expr 375 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
184183exlimdv 1830 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
185184expimpd 363 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
186 fsumadd.1 . . 3 (𝜑𝐴 ∈ Fin)
187 fz1f1o 11521 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
188186, 187syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
18912, 185, 188mpjaod 719 1 (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  c0 3447  ifcif 3558   class class class wbr 4030  cmpt 4091  ccom 4664  wf 5251  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  Fincfn 6796  cc 7872  0cc0 7874  1c1 7875   + caddc 7877  cle 8057  cn 8984  cz 9320  cuz 9595  ...cfz 10077  seqcseq 10521  chash 10849  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  fsumsplit  11553  fsumsub  11598  binomlem  11629  pcbc  12492  plyaddlem1  14926
  Copyright terms: Public domain W3C validator