ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumadd GIF version

Theorem fsumadd 11014
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumadd.1 (𝜑𝐴 ∈ Fin)
fsumadd.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumadd.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumadd (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumadd
Dummy variables 𝑓 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 00id 7774 . . . . 5 (0 + 0) = 0
2 sum0 10996 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
3 sum0 10996 . . . . . 6 Σ𝑘 ∈ ∅ 𝐶 = 0
42, 3oveq12i 5718 . . . . 5 𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶) = (0 + 0)
5 sum0 10996 . . . . 5 Σ𝑘 ∈ ∅ (𝐵 + 𝐶) = 0
61, 4, 53eqtr4ri 2131 . . . 4 Σ𝑘 ∈ ∅ (𝐵 + 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶)
7 sumeq1 10963 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = Σ𝑘 ∈ ∅ (𝐵 + 𝐶))
8 sumeq1 10963 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
9 sumeq1 10963 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
108, 9oveq12d 5724 . . . 4 (𝐴 = ∅ → (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶))
116, 7, 103eqtr4a 2158 . . 3 (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
1211a1i 9 . 2 (𝜑 → (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
13 simprl 501 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
14 nnuz 9211 . . . . . . . . 9 ℕ = (ℤ‘1)
1513, 14syl6eleq 2192 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
16 eqid 2100 . . . . . . . . . 10 (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))
17 breq1 3878 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑛 ≤ (♯‘𝐴)))
18 fveq2 5353 . . . . . . . . . . 11 (𝑗 = 𝑛 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛))
1917, 18ifbieq1d 3441 . . . . . . . . . 10 (𝑗 = 𝑛 → if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))
20 elnnuz 9212 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
2120biimpri 132 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
2221adantl 273 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
23 fsumadd.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2423adantlr 464 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2524fmpttd 5507 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
26 simprr 502 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
27 f1of 5301 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2826, 27syl 14 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
29 fco 5224 . . . . . . . . . . . . . 14 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
3025, 28, 29syl2anc 406 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
3130ad2antrr 475 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
32 1zzd 8933 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
3313ad2antrr 475 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
3433nnzd 9024 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
35 eluzelz 9185 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℤ)
3635ad2antlr 476 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 𝑛 ∈ ℤ)
3732, 34, 363jca 1129 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑛 ∈ ℤ))
38 eluzle 9188 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘1) → 1 ≤ 𝑛)
3938ad2antlr 476 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 1 ≤ 𝑛)
40 simpr 109 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 𝑛 ≤ (♯‘𝐴))
4139, 40jca 302 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (1 ≤ 𝑛𝑛 ≤ (♯‘𝐴)))
42 elfz2 9638 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(♯‘𝐴)) ↔ ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (1 ≤ 𝑛𝑛 ≤ (♯‘𝐴))))
4337, 41, 42sylanbrc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 𝑛 ∈ (1...(♯‘𝐴)))
4431, 43ffvelrnd 5488 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
45 0cnd 7631 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → 0 ∈ ℂ)
4622nnzd 9024 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℤ)
4713adantr 272 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℕ)
4847nnzd 9024 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℤ)
49 zdcle 8979 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑛 ≤ (♯‘𝐴))
5046, 48, 49syl2anc 406 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛 ≤ (♯‘𝐴))
5144, 45, 50ifcldadc 3448 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) ∈ ℂ)
5216, 19, 22, 51fvmptd3 5446 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))‘𝑛) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))
5352, 51eqeltrd 2176 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))‘𝑛) ∈ ℂ)
54 eqid 2100 . . . . . . . . . 10 (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))
55 fveq2 5353 . . . . . . . . . . 11 (𝑗 = 𝑛 → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗) = (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛))
5617, 55ifbieq1d 3441 . . . . . . . . . 10 (𝑗 = 𝑛 → if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0))
57 fsumadd.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
5857adantlr 464 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
5958fmpttd 5507 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
6059ad2antrr 475 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
6128ad2antrr 475 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
62 fco 5224 . . . . . . . . . . . . 13 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
6360, 61, 62syl2anc 406 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
6463, 43ffvelrnd 5488 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ)
6564, 45, 50ifcldadc 3448 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0) ∈ ℂ)
6654, 56, 22, 65fvmptd3 5446 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))‘𝑛) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0))
6766, 65eqeltrd 2176 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))‘𝑛) ∈ ℂ)
68 simpll 499 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
6928ffvelrnda 5487 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
70 simpr 109 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → 𝑘𝐴)
7123, 57addcld 7657 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℂ)
72 eqid 2100 . . . . . . . . . . . . . . . . . . 19 (𝑘𝐴 ↦ (𝐵 + 𝐶)) = (𝑘𝐴 ↦ (𝐵 + 𝐶))
7372fvmpt2 5436 . . . . . . . . . . . . . . . . . 18 ((𝑘𝐴 ∧ (𝐵 + 𝐶) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
7470, 71, 73syl2anc 406 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
75 eqid 2100 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
7675fvmpt2 5436 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
7770, 23, 76syl2anc 406 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
78 eqid 2100 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
7978fvmpt2 5436 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝐴𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
8070, 57, 79syl2anc 406 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
8177, 80oveq12d 5724 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) = (𝐵 + 𝐶))
8274, 81eqtr4d 2135 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
8382ralrimiva 2464 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
8483ad2antrr 475 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
85 nffvmpt1 5364 . . . . . . . . . . . . . . . 16 𝑘((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛))
86 nffvmpt1 5364 . . . . . . . . . . . . . . . . 17 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
87 nfcv 2240 . . . . . . . . . . . . . . . . 17 𝑘 +
88 nffvmpt1 5364 . . . . . . . . . . . . . . . . 17 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛))
8986, 87, 88nfov 5733 . . . . . . . . . . . . . . . 16 𝑘(((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))
9085, 89nfeq 2248 . . . . . . . . . . . . . . 15 𝑘((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))
91 fveq2 5353 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
92 fveq2 5353 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
93 fveq2 5353 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
9492, 93oveq12d 5724 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
9591, 94eqeq12d 2114 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
9690, 95rspc 2738 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
9769, 84, 96sylc 62 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
98 fvco3 5424 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
9928, 98sylan 279 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
100 fvco3 5424 . . . . . . . . . . . . . . 15 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
10128, 100sylan 279 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
102 fvco3 5424 . . . . . . . . . . . . . . 15 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
10328, 102sylan 279 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
104101, 103oveq12d 5724 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
10597, 99, 1043eqtr4d 2142 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
10668, 43, 105syl2anc 406 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
10740iftrued 3428 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛))
10840iftrued 3428 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛))
10940iftrued 3428 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0) = (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛))
110108, 109oveq12d 5724 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
111106, 107, 1103eqtr4d 2142 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))
1121eqcomi 2104 . . . . . . . . . . 11 0 = (0 + 0)
113 simpr 109 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → ¬ 𝑛 ≤ (♯‘𝐴))
114113iffalsed 3431 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = 0)
115113iffalsed 3431 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) = 0)
116113iffalsed 3431 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0) = 0)
117115, 116oveq12d 5724 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)) = (0 + 0))
118112, 114, 1173eqtr4a 2158 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ ¬ 𝑛 ≤ (♯‘𝐴)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))
119 exmiddc 788 . . . . . . . . . . 11 (DECID 𝑛 ≤ (♯‘𝐴) → (𝑛 ≤ (♯‘𝐴) ∨ ¬ 𝑛 ≤ (♯‘𝐴)))
12050, 119syl 14 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → (𝑛 ≤ (♯‘𝐴) ∨ ¬ 𝑛 ≤ (♯‘𝐴)))
121111, 118, 120mpjaodan 753 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))
122 eqid 2100 . . . . . . . . . 10 (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))
123 fveq2 5353 . . . . . . . . . . 11 (𝑗 = 𝑛 → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗) = (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛))
12417, 123ifbieq1d 3441 . . . . . . . . . 10 (𝑗 = 𝑛 → if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0))
12571fmpttd 5507 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
126125ad3antrrr 479 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
127 fco 5224 . . . . . . . . . . . . 13 (((𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
128126, 61, 127syl2anc 406 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
129128, 43ffvelrnd 5488 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) ∈ ℂ)
130129, 45, 50ifcldadc 3448 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) ∈ ℂ)
131122, 124, 22, 130fvmptd3 5446 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))‘𝑛) = if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0))
13252, 66oveq12d 5724 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → (((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))‘𝑛) + ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))‘𝑛)) = (if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) + if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))
133121, 131, 1323eqtr4d 2142 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))‘𝑛) = (((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))‘𝑛) + ((𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))‘𝑛)))
13415, 53, 67, 133ser3add 10119 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)) = ((seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)) + (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴))))
135 fveq2 5353 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
13624, 58addcld 7657 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → (𝐵 + 𝐶) ∈ ℂ)
137136fmpttd 5507 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
138137ffvelrnda 5487 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) ∈ ℂ)
139135, 13, 26, 138, 99fsum3 10995 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))
140 breq1 3878 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑗 ≤ (♯‘𝐴)))
141 fveq2 5353 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗))
142140, 141ifbieq1d 3441 . . . . . . . . . . 11 (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0) = if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))
143142cbvmptv 3964 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))
144 seqeq3 10064 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0))))
145143, 144ax-mp 7 . . . . . . . . 9 seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)))
146145fveq1i 5354 . . . . . . . 8 (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴))
147139, 146syl6eq 2148 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)))
148 fveq2 5353 . . . . . . . . . 10 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
14925ffvelrnda 5487 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
150148, 13, 26, 149, 101fsum3 10995 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))
151 fveq2 5353 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗))
152140, 151ifbieq1d 3441 . . . . . . . . . . . 12 (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) = if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))
153152cbvmptv 3964 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))
154 seqeq3 10064 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0))))
155153, 154ax-mp 7 . . . . . . . . . 10 seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)))
156155fveq1i 5354 . . . . . . . . 9 (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴))
157150, 156syl6eq 2148 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)))
158 fveq2 5353 . . . . . . . . . 10 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
15959ffvelrnda 5487 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
160158, 13, 26, 159, 103fsum3 10995 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))
161 fveq2 5353 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗))
162140, 161ifbieq1d 3441 . . . . . . . . . . . 12 (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0) = if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))
163162cbvmptv 3964 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))
164 seqeq3 10064 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0))))
165163, 164ax-mp 7 . . . . . . . . . 10 seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0))) = seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)))
166165fveq1i 5354 . . . . . . . . 9 (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴))
167160, 166syl6eq 2148 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)))
168157, 167oveq12d 5724 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴)) + (seq1( + , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑗), 0)))‘(♯‘𝐴))))
169134, 147, 1683eqtr4d 2142 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
17071ralrimiva 2464 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 (𝐵 + 𝐶) ∈ ℂ)
171 sumfct 10982 . . . . . . . 8 (∀𝑘𝐴 (𝐵 + 𝐶) ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘𝐴 (𝐵 + 𝐶))
172170, 171syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘𝐴 (𝐵 + 𝐶))
173172adantr 272 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘𝐴 (𝐵 + 𝐶))
17423ralrimiva 2464 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
175 sumfct 10982 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
176174, 175syl 14 . . . . . . . 8 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
17757ralrimiva 2464 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
178 sumfct 10982 . . . . . . . . 9 (∀𝑘𝐴 𝐶 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
179177, 178syl 14 . . . . . . . 8 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
180176, 179oveq12d 5724 . . . . . . 7 (𝜑 → (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
181180adantr 272 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
182169, 173, 1813eqtr3d 2140 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
183182expr 370 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
184183exlimdv 1758 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
185184expimpd 358 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
186 fsumadd.1 . . 3 (𝜑𝐴 ∈ Fin)
187 fz1f1o 10983 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
188186, 187syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
18912, 185, 188mpjaod 679 1 (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 670  DECID wdc 786  w3a 930   = wceq 1299  wex 1436  wcel 1448  wral 2375  c0 3310  ifcif 3421   class class class wbr 3875  cmpt 3929  ccom 4481  wf 5055  1-1-ontowf1o 5058  cfv 5059  (class class class)co 5706  Fincfn 6564  cc 7498  0cc0 7500  1c1 7501   + caddc 7503  cle 7673  cn 8578  cz 8906  cuz 9176  ...cfz 9631  seqcseq 10059  chash 10362  Σcsu 10961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-frec 6218  df-1o 6243  df-oadd 6247  df-er 6359  df-en 6565  df-dom 6566  df-fin 6567  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-seqfrec 10060  df-exp 10134  df-ihash 10363  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-clim 10887  df-sumdc 10962
This theorem is referenced by:  fsumsplit  11015  fsumsub  11060  binomlem  11091
  Copyright terms: Public domain W3C validator