ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numsucc GIF version

Theorem numsucc 8914
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numsucc.1 𝑌 ∈ ℕ0
numsucc.2 𝑇 = (𝑌 + 1)
numsucc.3 𝐴 ∈ ℕ0
numsucc.4 (𝐴 + 1) = 𝐵
numsucc.5 𝑁 = ((𝑇 · 𝐴) + 𝑌)
Assertion
Ref Expression
numsucc (𝑁 + 1) = ((𝑇 · 𝐵) + 0)

Proof of Theorem numsucc
StepHypRef Expression
1 numsucc.2 . . . . . . 7 𝑇 = (𝑌 + 1)
2 numsucc.1 . . . . . . . 8 𝑌 ∈ ℕ0
3 1nn0 8687 . . . . . . . 8 1 ∈ ℕ0
42, 3nn0addcli 8708 . . . . . . 7 (𝑌 + 1) ∈ ℕ0
51, 4eqeltri 2160 . . . . . 6 𝑇 ∈ ℕ0
65nn0cni 8683 . . . . 5 𝑇 ∈ ℂ
76mulid1i 7488 . . . 4 (𝑇 · 1) = 𝑇
87oveq2i 5663 . . 3 ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇)
9 numsucc.3 . . . . 5 𝐴 ∈ ℕ0
109nn0cni 8683 . . . 4 𝐴 ∈ ℂ
11 ax-1cn 7436 . . . 4 1 ∈ ℂ
126, 10, 11adddii 7496 . . 3 (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1))
131eqcomi 2092 . . . 4 (𝑌 + 1) = 𝑇
14 numsucc.5 . . . 4 𝑁 = ((𝑇 · 𝐴) + 𝑌)
155, 9, 2, 13, 14numsuc 8888 . . 3 (𝑁 + 1) = ((𝑇 · 𝐴) + 𝑇)
168, 12, 153eqtr4ri 2119 . 2 (𝑁 + 1) = (𝑇 · (𝐴 + 1))
17 numsucc.4 . . 3 (𝐴 + 1) = 𝐵
1817oveq2i 5663 . 2 (𝑇 · (𝐴 + 1)) = (𝑇 · 𝐵)
199, 3nn0addcli 8708 . . . 4 (𝐴 + 1) ∈ ℕ0
2017, 19eqeltrri 2161 . . 3 𝐵 ∈ ℕ0
215, 20num0u 8885 . 2 (𝑇 · 𝐵) = ((𝑇 · 𝐵) + 0)
2216, 18, 213eqtri 2112 1 (𝑁 + 1) = ((𝑇 · 𝐵) + 0)
Colors of variables: wff set class
Syntax hints:   = wceq 1289  wcel 1438  (class class class)co 5652  0cc0 7348  1c1 7349   + caddc 7351   · cmul 7353  0cn0 8671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-sub 7653  df-inn 8421  df-n0 8672
This theorem is referenced by:  decsucc  8915
  Copyright terms: Public domain W3C validator