| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numsucc | GIF version | ||
| Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numsucc.1 | ⊢ 𝑌 ∈ ℕ0 |
| numsucc.2 | ⊢ 𝑇 = (𝑌 + 1) |
| numsucc.3 | ⊢ 𝐴 ∈ ℕ0 |
| numsucc.4 | ⊢ (𝐴 + 1) = 𝐵 |
| numsucc.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) |
| Ref | Expression |
|---|---|
| numsucc | ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numsucc.2 | . . . . . . 7 ⊢ 𝑇 = (𝑌 + 1) | |
| 2 | numsucc.1 | . . . . . . . 8 ⊢ 𝑌 ∈ ℕ0 | |
| 3 | 1nn0 9373 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 4 | 2, 3 | nn0addcli 9394 | . . . . . . 7 ⊢ (𝑌 + 1) ∈ ℕ0 |
| 5 | 1, 4 | eqeltri 2302 | . . . . . 6 ⊢ 𝑇 ∈ ℕ0 |
| 6 | 5 | nn0cni 9369 | . . . . 5 ⊢ 𝑇 ∈ ℂ |
| 7 | 6 | mulridi 8136 | . . . 4 ⊢ (𝑇 · 1) = 𝑇 |
| 8 | 7 | oveq2i 6005 | . . 3 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
| 9 | numsucc.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 10 | 9 | nn0cni 9369 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 11 | ax-1cn 8080 | . . . 4 ⊢ 1 ∈ ℂ | |
| 12 | 6, 10, 11 | adddii 8144 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
| 13 | 1 | eqcomi 2233 | . . . 4 ⊢ (𝑌 + 1) = 𝑇 |
| 14 | numsucc.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) | |
| 15 | 5, 9, 2, 13, 14 | numsuc 9579 | . . 3 ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝑇) |
| 16 | 8, 12, 15 | 3eqtr4ri 2261 | . 2 ⊢ (𝑁 + 1) = (𝑇 · (𝐴 + 1)) |
| 17 | numsucc.4 | . . 3 ⊢ (𝐴 + 1) = 𝐵 | |
| 18 | 17 | oveq2i 6005 | . 2 ⊢ (𝑇 · (𝐴 + 1)) = (𝑇 · 𝐵) |
| 19 | 9, 3 | nn0addcli 9394 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
| 20 | 17, 19 | eqeltrri 2303 | . . 3 ⊢ 𝐵 ∈ ℕ0 |
| 21 | 5, 20 | num0u 9576 | . 2 ⊢ (𝑇 · 𝐵) = ((𝑇 · 𝐵) + 0) |
| 22 | 16, 18, 21 | 3eqtri 2254 | 1 ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 5994 0cc0 7987 1c1 7988 + caddc 7990 · cmul 7992 ℕ0cn0 9357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-sub 8307 df-inn 9099 df-n0 9358 |
| This theorem is referenced by: decsucc 9606 |
| Copyright terms: Public domain | W3C validator |