ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numsucc GIF version

Theorem numsucc 9369
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numsucc.1 𝑌 ∈ ℕ0
numsucc.2 𝑇 = (𝑌 + 1)
numsucc.3 𝐴 ∈ ℕ0
numsucc.4 (𝐴 + 1) = 𝐵
numsucc.5 𝑁 = ((𝑇 · 𝐴) + 𝑌)
Assertion
Ref Expression
numsucc (𝑁 + 1) = ((𝑇 · 𝐵) + 0)

Proof of Theorem numsucc
StepHypRef Expression
1 numsucc.2 . . . . . . 7 𝑇 = (𝑌 + 1)
2 numsucc.1 . . . . . . . 8 𝑌 ∈ ℕ0
3 1nn0 9138 . . . . . . . 8 1 ∈ ℕ0
42, 3nn0addcli 9159 . . . . . . 7 (𝑌 + 1) ∈ ℕ0
51, 4eqeltri 2243 . . . . . 6 𝑇 ∈ ℕ0
65nn0cni 9134 . . . . 5 𝑇 ∈ ℂ
76mulid1i 7909 . . . 4 (𝑇 · 1) = 𝑇
87oveq2i 5861 . . 3 ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇)
9 numsucc.3 . . . . 5 𝐴 ∈ ℕ0
109nn0cni 9134 . . . 4 𝐴 ∈ ℂ
11 ax-1cn 7854 . . . 4 1 ∈ ℂ
126, 10, 11adddii 7917 . . 3 (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1))
131eqcomi 2174 . . . 4 (𝑌 + 1) = 𝑇
14 numsucc.5 . . . 4 𝑁 = ((𝑇 · 𝐴) + 𝑌)
155, 9, 2, 13, 14numsuc 9343 . . 3 (𝑁 + 1) = ((𝑇 · 𝐴) + 𝑇)
168, 12, 153eqtr4ri 2202 . 2 (𝑁 + 1) = (𝑇 · (𝐴 + 1))
17 numsucc.4 . . 3 (𝐴 + 1) = 𝐵
1817oveq2i 5861 . 2 (𝑇 · (𝐴 + 1)) = (𝑇 · 𝐵)
199, 3nn0addcli 9159 . . . 4 (𝐴 + 1) ∈ ℕ0
2017, 19eqeltrri 2244 . . 3 𝐵 ∈ ℕ0
215, 20num0u 9340 . 2 (𝑇 · 𝐵) = ((𝑇 · 𝐵) + 0)
2216, 18, 213eqtri 2195 1 (𝑁 + 1) = ((𝑇 · 𝐵) + 0)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  (class class class)co 5850  0cc0 7761  1c1 7762   + caddc 7764   · cmul 7766  0cn0 9122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-sub 8079  df-inn 8866  df-n0 9123
This theorem is referenced by:  decsucc  9370
  Copyright terms: Public domain W3C validator