ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodrec GIF version

Theorem fprodrec 11570
Description: The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
Hypotheses
Ref Expression
fprodrec.a (𝜑𝐴 ∈ Fin)
fprodrec.ccl ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodrec.cap ((𝜑𝑘𝐴) → 𝐵 # 0)
Assertion
Ref Expression
fprodrec (𝜑 → ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodrec
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11494 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘 ∈ ∅ (1 / 𝐵))
2 prodeq1 11494 . . . 4 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
32oveq2d 5858 . . 3 (𝑤 = ∅ → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵))
41, 3eqeq12d 2180 . 2 (𝑤 = ∅ → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵)))
5 prodeq1 11494 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘𝑦 (1 / 𝐵))
6 prodeq1 11494 . . . 4 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
76oveq2d 5858 . . 3 (𝑤 = 𝑦 → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘𝑦 𝐵))
85, 7eqeq12d 2180 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)))
9 prodeq1 11494 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵))
10 prodeq1 11494 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1110oveq2d 5858 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
129, 11eqeq12d 2180 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
13 prodeq1 11494 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘𝐴 (1 / 𝐵))
14 prodeq1 11494 . . . 4 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
1514oveq2d 5858 . . 3 (𝑤 = 𝐴 → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘𝐴 𝐵))
1613, 15eqeq12d 2180 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵)))
17 1div1e1 8600 . . . 4 (1 / 1) = 1
18 prod0 11526 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
1918oveq2i 5853 . . . 4 (1 / ∏𝑘 ∈ ∅ 𝐵) = (1 / 1)
20 prod0 11526 . . . 4 𝑘 ∈ ∅ (1 / 𝐵) = 1
2117, 19, 203eqtr4ri 2197 . . 3 𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵)
2221a1i 9 . 2 (𝜑 → ∏𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵))
23 simpr 109 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵))
2423oveq1d 5857 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
25 1cnd 7915 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 1 ∈ ℂ)
26 simplr 520 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
27 simplll 523 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
28 simplrl 525 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
29 simpr 109 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
3028, 29sseldd 3143 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
31 fprodrec.ccl . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3227, 30, 31syl2anc 409 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
3326, 32fprodcl 11548 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
3433adantr 274 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 𝐵 ∈ ℂ)
35 simprr 522 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
3635eldifad 3127 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3731ralrimiva 2539 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
3837ad2antrr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
39 nfcsb1v 3078 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4039nfel1 2319 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
41 csbeq1a 3054 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4241eleq1d 2235 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
4340, 42rspc 2824 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
4436, 38, 43sylc 62 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
4544adantr 274 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 𝑧 / 𝑘𝐵 ∈ ℂ)
46 fprodrec.cap . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 # 0)
4727, 30, 46syl2anc 409 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 # 0)
4826, 32, 47fprodap0 11562 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 # 0)
4948adantr 274 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 𝐵 # 0)
5046ralrimiva 2539 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 # 0)
5150ad2antrr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 # 0)
52 nfcv 2308 . . . . . . . . . . 11 𝑘 #
53 nfcv 2308 . . . . . . . . . . 11 𝑘0
5439, 52, 53nfbr 4028 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 # 0
5541breq1d 3992 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 # 0 ↔ 𝑧 / 𝑘𝐵 # 0))
5654, 55rspc 2824 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 𝐵 # 0 → 𝑧 / 𝑘𝐵 # 0))
5736, 51, 56sylc 62 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 # 0)
5857adantr 274 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 𝑧 / 𝑘𝐵 # 0)
5925, 34, 25, 45, 49, 58divmuldivapd 8728 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = ((1 · 1) / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
60 1t1e1 9009 . . . . . . 7 (1 · 1) = 1
6160oveq1i 5852 . . . . . 6 ((1 · 1) / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
6259, 61eqtrdi 2215 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
6324, 62eqtrd 2198 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
64 nfcv 2308 . . . . . . 7 𝑘1
65 nfcv 2308 . . . . . . 7 𝑘 /
6664, 65, 39nfov 5872 . . . . . 6 𝑘(1 / 𝑧 / 𝑘𝐵)
6735eldifbd 3128 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
6832, 47recclapd 8677 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (1 / 𝐵) ∈ ℂ)
6944, 57recclapd 8677 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (1 / 𝑧 / 𝑘𝐵) ∈ ℂ)
7041oveq2d 5858 . . . . . 6 (𝑘 = 𝑧 → (1 / 𝐵) = (1 / 𝑧 / 𝑘𝐵))
7166, 26, 35, 67, 68, 69, 70fprodunsn 11545 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
7271adantr 274 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
7339, 26, 35, 67, 32, 44, 41fprodunsn 11545 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7473oveq2d 5858 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
7574adantr 274 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
7663, 72, 753eqtr4d 2208 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
7776ex 114 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
78 fprodrec.a . 2 (𝜑𝐴 ∈ Fin)
794, 8, 12, 16, 22, 77, 78findcard2sd 6858 1 (𝜑 → ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  csb 3045  cdif 3113  cun 3114  wss 3116  c0 3409  {csn 3576   class class class wbr 3982  (class class class)co 5842  Fincfn 6706  cc 7751  0cc0 7753  1c1 7754   · cmul 7758   # cap 8479   / cdiv 8568  cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by:  fproddivap  11571
  Copyright terms: Public domain W3C validator