ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodrec GIF version

Theorem fprodrec 11526
Description: The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
Hypotheses
Ref Expression
fprodrec.a (𝜑𝐴 ∈ Fin)
fprodrec.ccl ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodrec.cap ((𝜑𝑘𝐴) → 𝐵 # 0)
Assertion
Ref Expression
fprodrec (𝜑 → ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodrec
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11450 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘 ∈ ∅ (1 / 𝐵))
2 prodeq1 11450 . . . 4 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
32oveq2d 5840 . . 3 (𝑤 = ∅ → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵))
41, 3eqeq12d 2172 . 2 (𝑤 = ∅ → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵)))
5 prodeq1 11450 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘𝑦 (1 / 𝐵))
6 prodeq1 11450 . . . 4 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
76oveq2d 5840 . . 3 (𝑤 = 𝑦 → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘𝑦 𝐵))
85, 7eqeq12d 2172 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)))
9 prodeq1 11450 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵))
10 prodeq1 11450 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1110oveq2d 5840 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
129, 11eqeq12d 2172 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
13 prodeq1 11450 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘𝐴 (1 / 𝐵))
14 prodeq1 11450 . . . 4 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
1514oveq2d 5840 . . 3 (𝑤 = 𝐴 → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘𝐴 𝐵))
1613, 15eqeq12d 2172 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵)))
17 1div1e1 8577 . . . 4 (1 / 1) = 1
18 prod0 11482 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
1918oveq2i 5835 . . . 4 (1 / ∏𝑘 ∈ ∅ 𝐵) = (1 / 1)
20 prod0 11482 . . . 4 𝑘 ∈ ∅ (1 / 𝐵) = 1
2117, 19, 203eqtr4ri 2189 . . 3 𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵)
2221a1i 9 . 2 (𝜑 → ∏𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵))
23 simpr 109 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵))
2423oveq1d 5839 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
25 1cnd 7894 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 1 ∈ ℂ)
26 simplr 520 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
27 simplll 523 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
28 simplrl 525 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
29 simpr 109 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
3028, 29sseldd 3129 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
31 fprodrec.ccl . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3227, 30, 31syl2anc 409 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
3326, 32fprodcl 11504 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
3433adantr 274 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 𝐵 ∈ ℂ)
35 simprr 522 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
3635eldifad 3113 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3731ralrimiva 2530 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
3837ad2antrr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
39 nfcsb1v 3064 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4039nfel1 2310 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
41 csbeq1a 3040 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4241eleq1d 2226 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
4340, 42rspc 2810 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
4436, 38, 43sylc 62 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
4544adantr 274 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 𝑧 / 𝑘𝐵 ∈ ℂ)
46 fprodrec.cap . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 # 0)
4727, 30, 46syl2anc 409 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 # 0)
4826, 32, 47fprodap0 11518 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 # 0)
4948adantr 274 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 𝐵 # 0)
5046ralrimiva 2530 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 # 0)
5150ad2antrr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 # 0)
52 nfcv 2299 . . . . . . . . . . 11 𝑘 #
53 nfcv 2299 . . . . . . . . . . 11 𝑘0
5439, 52, 53nfbr 4010 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 # 0
5541breq1d 3975 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 # 0 ↔ 𝑧 / 𝑘𝐵 # 0))
5654, 55rspc 2810 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 𝐵 # 0 → 𝑧 / 𝑘𝐵 # 0))
5736, 51, 56sylc 62 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 # 0)
5857adantr 274 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 𝑧 / 𝑘𝐵 # 0)
5925, 34, 25, 45, 49, 58divmuldivapd 8705 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = ((1 · 1) / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
60 1t1e1 8985 . . . . . . 7 (1 · 1) = 1
6160oveq1i 5834 . . . . . 6 ((1 · 1) / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
6259, 61eqtrdi 2206 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
6324, 62eqtrd 2190 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
64 nfcv 2299 . . . . . . 7 𝑘1
65 nfcv 2299 . . . . . . 7 𝑘 /
6664, 65, 39nfov 5851 . . . . . 6 𝑘(1 / 𝑧 / 𝑘𝐵)
6735eldifbd 3114 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
6832, 47recclapd 8654 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (1 / 𝐵) ∈ ℂ)
6944, 57recclapd 8654 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (1 / 𝑧 / 𝑘𝐵) ∈ ℂ)
7041oveq2d 5840 . . . . . 6 (𝑘 = 𝑧 → (1 / 𝐵) = (1 / 𝑧 / 𝑘𝐵))
7166, 26, 35, 67, 68, 69, 70fprodunsn 11501 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
7271adantr 274 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
7339, 26, 35, 67, 32, 44, 41fprodunsn 11501 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7473oveq2d 5840 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
7574adantr 274 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
7663, 72, 753eqtr4d 2200 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
7776ex 114 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
78 fprodrec.a . 2 (𝜑𝐴 ∈ Fin)
794, 8, 12, 16, 22, 77, 78findcard2sd 6837 1 (𝜑 → ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  wral 2435  csb 3031  cdif 3099  cun 3100  wss 3102  c0 3394  {csn 3560   class class class wbr 3965  (class class class)co 5824  Fincfn 6685  cc 7730  0cc0 7732  1c1 7733   · cmul 7737   # cap 8456   / cdiv 8545  cprod 11447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-frec 6338  df-1o 6363  df-oadd 6367  df-er 6480  df-en 6686  df-dom 6687  df-fin 6688  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-fz 9913  df-fzo 10042  df-seqfrec 10345  df-exp 10419  df-ihash 10650  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-clim 11176  df-proddc 11448
This theorem is referenced by:  fproddivap  11527
  Copyright terms: Public domain W3C validator