ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodrec GIF version

Theorem fprodrec 11940
Description: The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
Hypotheses
Ref Expression
fprodrec.a (𝜑𝐴 ∈ Fin)
fprodrec.ccl ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodrec.cap ((𝜑𝑘𝐴) → 𝐵 # 0)
Assertion
Ref Expression
fprodrec (𝜑 → ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodrec
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11864 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘 ∈ ∅ (1 / 𝐵))
2 prodeq1 11864 . . . 4 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
32oveq2d 5960 . . 3 (𝑤 = ∅ → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵))
41, 3eqeq12d 2220 . 2 (𝑤 = ∅ → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵)))
5 prodeq1 11864 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘𝑦 (1 / 𝐵))
6 prodeq1 11864 . . . 4 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
76oveq2d 5960 . . 3 (𝑤 = 𝑦 → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘𝑦 𝐵))
85, 7eqeq12d 2220 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)))
9 prodeq1 11864 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵))
10 prodeq1 11864 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1110oveq2d 5960 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
129, 11eqeq12d 2220 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
13 prodeq1 11864 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘𝐴 (1 / 𝐵))
14 prodeq1 11864 . . . 4 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
1514oveq2d 5960 . . 3 (𝑤 = 𝐴 → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘𝐴 𝐵))
1613, 15eqeq12d 2220 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵)))
17 1div1e1 8777 . . . 4 (1 / 1) = 1
18 prod0 11896 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
1918oveq2i 5955 . . . 4 (1 / ∏𝑘 ∈ ∅ 𝐵) = (1 / 1)
20 prod0 11896 . . . 4 𝑘 ∈ ∅ (1 / 𝐵) = 1
2117, 19, 203eqtr4ri 2237 . . 3 𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵)
2221a1i 9 . 2 (𝜑 → ∏𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵))
23 simpr 110 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵))
2423oveq1d 5959 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
25 1cnd 8088 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 1 ∈ ℂ)
26 simplr 528 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
27 simplll 533 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
28 simplrl 535 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
29 simpr 110 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
3028, 29sseldd 3194 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
31 fprodrec.ccl . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3227, 30, 31syl2anc 411 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
3326, 32fprodcl 11918 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
3433adantr 276 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 𝐵 ∈ ℂ)
35 simprr 531 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
3635eldifad 3177 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3731ralrimiva 2579 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
3837ad2antrr 488 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
39 nfcsb1v 3126 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4039nfel1 2359 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
41 csbeq1a 3102 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4241eleq1d 2274 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
4340, 42rspc 2871 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
4436, 38, 43sylc 62 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
4544adantr 276 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 𝑧 / 𝑘𝐵 ∈ ℂ)
46 fprodrec.cap . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 # 0)
4727, 30, 46syl2anc 411 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 # 0)
4826, 32, 47fprodap0 11932 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 # 0)
4948adantr 276 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 𝐵 # 0)
5046ralrimiva 2579 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 # 0)
5150ad2antrr 488 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 # 0)
52 nfcv 2348 . . . . . . . . . . 11 𝑘 #
53 nfcv 2348 . . . . . . . . . . 11 𝑘0
5439, 52, 53nfbr 4090 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 # 0
5541breq1d 4054 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 # 0 ↔ 𝑧 / 𝑘𝐵 # 0))
5654, 55rspc 2871 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 𝐵 # 0 → 𝑧 / 𝑘𝐵 # 0))
5736, 51, 56sylc 62 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 # 0)
5857adantr 276 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 𝑧 / 𝑘𝐵 # 0)
5925, 34, 25, 45, 49, 58divmuldivapd 8905 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = ((1 · 1) / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
60 1t1e1 9189 . . . . . . 7 (1 · 1) = 1
6160oveq1i 5954 . . . . . 6 ((1 · 1) / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
6259, 61eqtrdi 2254 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
6324, 62eqtrd 2238 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
64 nfcv 2348 . . . . . . 7 𝑘1
65 nfcv 2348 . . . . . . 7 𝑘 /
6664, 65, 39nfov 5974 . . . . . 6 𝑘(1 / 𝑧 / 𝑘𝐵)
6735eldifbd 3178 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
6832, 47recclapd 8854 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (1 / 𝐵) ∈ ℂ)
6944, 57recclapd 8854 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (1 / 𝑧 / 𝑘𝐵) ∈ ℂ)
7041oveq2d 5960 . . . . . 6 (𝑘 = 𝑧 → (1 / 𝐵) = (1 / 𝑧 / 𝑘𝐵))
7166, 26, 35, 67, 68, 69, 70fprodunsn 11915 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
7271adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
7339, 26, 35, 67, 32, 44, 41fprodunsn 11915 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7473oveq2d 5960 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
7574adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
7663, 72, 753eqtr4d 2248 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
7776ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
78 fprodrec.a . 2 (𝜑𝐴 ∈ Fin)
794, 8, 12, 16, 22, 77, 78findcard2sd 6989 1 (𝜑 → ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wral 2484  csb 3093  cdif 3163  cun 3164  wss 3166  c0 3460  {csn 3633   class class class wbr 4044  (class class class)co 5944  Fincfn 6827  cc 7923  0cc0 7925  1c1 7926   · cmul 7930   # cap 8654   / cdiv 8745  cprod 11861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-proddc 11862
This theorem is referenced by:  fproddivap  11941
  Copyright terms: Public domain W3C validator