Step | Hyp | Ref
| Expression |
1 | | prodeq1 11494 |
. . 3
⊢ (𝑤 = ∅ → ∏𝑘 ∈ 𝑤 (1 / 𝐵) = ∏𝑘 ∈ ∅ (1 / 𝐵)) |
2 | | prodeq1 11494 |
. . . 4
⊢ (𝑤 = ∅ → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵) |
3 | 2 | oveq2d 5858 |
. . 3
⊢ (𝑤 = ∅ → (1 /
∏𝑘 ∈ 𝑤 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵)) |
4 | 1, 3 | eqeq12d 2180 |
. 2
⊢ (𝑤 = ∅ → (∏𝑘 ∈ 𝑤 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑤 𝐵) ↔ ∏𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵))) |
5 | | prodeq1 11494 |
. . 3
⊢ (𝑤 = 𝑦 → ∏𝑘 ∈ 𝑤 (1 / 𝐵) = ∏𝑘 ∈ 𝑦 (1 / 𝐵)) |
6 | | prodeq1 11494 |
. . . 4
⊢ (𝑤 = 𝑦 → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ 𝑦 𝐵) |
7 | 6 | oveq2d 5858 |
. . 3
⊢ (𝑤 = 𝑦 → (1 / ∏𝑘 ∈ 𝑤 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) |
8 | 5, 7 | eqeq12d 2180 |
. 2
⊢ (𝑤 = 𝑦 → (∏𝑘 ∈ 𝑤 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑤 𝐵) ↔ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵))) |
9 | | prodeq1 11494 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘 ∈ 𝑤 (1 / 𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵)) |
10 | | prodeq1 11494 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
11 | 10 | oveq2d 5858 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (1 / ∏𝑘 ∈ 𝑤 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
12 | 9, 11 | eqeq12d 2180 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘 ∈ 𝑤 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑤 𝐵) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))) |
13 | | prodeq1 11494 |
. . 3
⊢ (𝑤 = 𝐴 → ∏𝑘 ∈ 𝑤 (1 / 𝐵) = ∏𝑘 ∈ 𝐴 (1 / 𝐵)) |
14 | | prodeq1 11494 |
. . . 4
⊢ (𝑤 = 𝐴 → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ 𝐴 𝐵) |
15 | 14 | oveq2d 5858 |
. . 3
⊢ (𝑤 = 𝐴 → (1 / ∏𝑘 ∈ 𝑤 𝐵) = (1 / ∏𝑘 ∈ 𝐴 𝐵)) |
16 | 13, 15 | eqeq12d 2180 |
. 2
⊢ (𝑤 = 𝐴 → (∏𝑘 ∈ 𝑤 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑤 𝐵) ↔ ∏𝑘 ∈ 𝐴 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝐴 𝐵))) |
17 | | 1div1e1 8600 |
. . . 4
⊢ (1 / 1) =
1 |
18 | | prod0 11526 |
. . . . 5
⊢
∏𝑘 ∈
∅ 𝐵 =
1 |
19 | 18 | oveq2i 5853 |
. . . 4
⊢ (1 /
∏𝑘 ∈ ∅
𝐵) = (1 /
1) |
20 | | prod0 11526 |
. . . 4
⊢
∏𝑘 ∈
∅ (1 / 𝐵) =
1 |
21 | 17, 19, 20 | 3eqtr4ri 2197 |
. . 3
⊢
∏𝑘 ∈
∅ (1 / 𝐵) = (1 /
∏𝑘 ∈ ∅
𝐵) |
22 | 21 | a1i 9 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵)) |
23 | | simpr 109 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) |
24 | 23 | oveq1d 5857 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → (∏𝑘 ∈ 𝑦 (1 / 𝐵) · (1 / ⦋𝑧 / 𝑘⦌𝐵)) = ((1 / ∏𝑘 ∈ 𝑦 𝐵) · (1 / ⦋𝑧 / 𝑘⦌𝐵))) |
25 | | 1cnd 7915 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → 1 ∈ ℂ) |
26 | | simplr 520 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑦 ∈ Fin) |
27 | | simplll 523 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝜑) |
28 | | simplrl 525 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
29 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝑦) |
30 | 28, 29 | sseldd 3143 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝐴) |
31 | | fprodrec.ccl |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
32 | 27, 30, 31 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) |
33 | 26, 32 | fprodcl 11548 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℂ) |
34 | 33 | adantr 274 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℂ) |
35 | | simprr 522 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
36 | 35 | eldifad 3127 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ 𝐴) |
37 | 31 | ralrimiva 2539 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
38 | 37 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
39 | | nfcsb1v 3078 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
40 | 39 | nfel1 2319 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ |
41 | | csbeq1a 3054 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
42 | 41 | eleq1d 2235 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ)) |
43 | 40, 42 | rspc 2824 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ)) |
44 | 36, 38, 43 | sylc 62 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
45 | 44 | adantr 274 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
46 | | fprodrec.cap |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) |
47 | 27, 30, 46 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 # 0) |
48 | 26, 32, 47 | fprodap0 11562 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐵 # 0) |
49 | 48 | adantr 274 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → ∏𝑘 ∈ 𝑦 𝐵 # 0) |
50 | 46 | ralrimiva 2539 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 # 0) |
51 | 50 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∀𝑘 ∈ 𝐴 𝐵 # 0) |
52 | | nfcv 2308 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘
# |
53 | | nfcv 2308 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘0 |
54 | 39, 52, 53 | nfbr 4028 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 # 0 |
55 | 41 | breq1d 3992 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑧 → (𝐵 # 0 ↔ ⦋𝑧 / 𝑘⦌𝐵 # 0)) |
56 | 54, 55 | rspc 2824 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 # 0 → ⦋𝑧 / 𝑘⦌𝐵 # 0)) |
57 | 36, 51, 56 | sylc 62 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐵 # 0) |
58 | 57 | adantr 274 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → ⦋𝑧 / 𝑘⦌𝐵 # 0) |
59 | 25, 34, 25, 45, 49, 58 | divmuldivapd 8728 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → ((1 / ∏𝑘 ∈ 𝑦 𝐵) · (1 / ⦋𝑧 / 𝑘⦌𝐵)) = ((1 · 1) / (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵))) |
60 | | 1t1e1 9009 |
. . . . . . 7
⊢ (1
· 1) = 1 |
61 | 60 | oveq1i 5852 |
. . . . . 6
⊢ ((1
· 1) / (∏𝑘
∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) = (1 / (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) |
62 | 59, 61 | eqtrdi 2215 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → ((1 / ∏𝑘 ∈ 𝑦 𝐵) · (1 / ⦋𝑧 / 𝑘⦌𝐵)) = (1 / (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵))) |
63 | 24, 62 | eqtrd 2198 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → (∏𝑘 ∈ 𝑦 (1 / 𝐵) · (1 / ⦋𝑧 / 𝑘⦌𝐵)) = (1 / (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵))) |
64 | | nfcv 2308 |
. . . . . . 7
⊢
Ⅎ𝑘1 |
65 | | nfcv 2308 |
. . . . . . 7
⊢
Ⅎ𝑘
/ |
66 | 64, 65, 39 | nfov 5872 |
. . . . . 6
⊢
Ⅎ𝑘(1 /
⦋𝑧 / 𝑘⦌𝐵) |
67 | 35 | eldifbd 3128 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑧 ∈ 𝑦) |
68 | 32, 47 | recclapd 8677 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → (1 / 𝐵) ∈ ℂ) |
69 | 44, 57 | recclapd 8677 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (1 / ⦋𝑧 / 𝑘⦌𝐵) ∈ ℂ) |
70 | 41 | oveq2d 5858 |
. . . . . 6
⊢ (𝑘 = 𝑧 → (1 / 𝐵) = (1 / ⦋𝑧 / 𝑘⦌𝐵)) |
71 | 66, 26, 35, 67, 68, 69, 70 | fprodunsn 11545 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (∏𝑘 ∈ 𝑦 (1 / 𝐵) · (1 / ⦋𝑧 / 𝑘⦌𝐵))) |
72 | 71 | adantr 274 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (∏𝑘 ∈ 𝑦 (1 / 𝐵) · (1 / ⦋𝑧 / 𝑘⦌𝐵))) |
73 | 39, 26, 35, 67, 32, 44, 41 | fprodunsn 11545 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) |
74 | 73 | oveq2d 5858 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (1 / (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵))) |
75 | 74 | adantr 274 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (1 / (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵))) |
76 | 63, 72, 75 | 3eqtr4d 2208 |
. . 3
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
77 | 76 | ex 114 |
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (∏𝑘 ∈ 𝑦 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝑦 𝐵) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))) |
78 | | fprodrec.a |
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) |
79 | 4, 8, 12, 16, 22, 77, 78 | findcard2sd 6858 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝐴 𝐵)) |