ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodrec GIF version

Theorem fprodrec 11794
Description: The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
Hypotheses
Ref Expression
fprodrec.a (𝜑𝐴 ∈ Fin)
fprodrec.ccl ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodrec.cap ((𝜑𝑘𝐴) → 𝐵 # 0)
Assertion
Ref Expression
fprodrec (𝜑 → ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodrec
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11718 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘 ∈ ∅ (1 / 𝐵))
2 prodeq1 11718 . . . 4 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
32oveq2d 5938 . . 3 (𝑤 = ∅ → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵))
41, 3eqeq12d 2211 . 2 (𝑤 = ∅ → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵)))
5 prodeq1 11718 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘𝑦 (1 / 𝐵))
6 prodeq1 11718 . . . 4 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
76oveq2d 5938 . . 3 (𝑤 = 𝑦 → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘𝑦 𝐵))
85, 7eqeq12d 2211 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)))
9 prodeq1 11718 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵))
10 prodeq1 11718 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1110oveq2d 5938 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
129, 11eqeq12d 2211 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
13 prodeq1 11718 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 (1 / 𝐵) = ∏𝑘𝐴 (1 / 𝐵))
14 prodeq1 11718 . . . 4 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
1514oveq2d 5938 . . 3 (𝑤 = 𝐴 → (1 / ∏𝑘𝑤 𝐵) = (1 / ∏𝑘𝐴 𝐵))
1613, 15eqeq12d 2211 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 (1 / 𝐵) = (1 / ∏𝑘𝑤 𝐵) ↔ ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵)))
17 1div1e1 8731 . . . 4 (1 / 1) = 1
18 prod0 11750 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
1918oveq2i 5933 . . . 4 (1 / ∏𝑘 ∈ ∅ 𝐵) = (1 / 1)
20 prod0 11750 . . . 4 𝑘 ∈ ∅ (1 / 𝐵) = 1
2117, 19, 203eqtr4ri 2228 . . 3 𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵)
2221a1i 9 . 2 (𝜑 → ∏𝑘 ∈ ∅ (1 / 𝐵) = (1 / ∏𝑘 ∈ ∅ 𝐵))
23 simpr 110 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵))
2423oveq1d 5937 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
25 1cnd 8042 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 1 ∈ ℂ)
26 simplr 528 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
27 simplll 533 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
28 simplrl 535 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
29 simpr 110 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
3028, 29sseldd 3184 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
31 fprodrec.ccl . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3227, 30, 31syl2anc 411 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
3326, 32fprodcl 11772 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
3433adantr 276 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 𝐵 ∈ ℂ)
35 simprr 531 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
3635eldifad 3168 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3731ralrimiva 2570 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
3837ad2antrr 488 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
39 nfcsb1v 3117 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4039nfel1 2350 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
41 csbeq1a 3093 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4241eleq1d 2265 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
4340, 42rspc 2862 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
4436, 38, 43sylc 62 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
4544adantr 276 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 𝑧 / 𝑘𝐵 ∈ ℂ)
46 fprodrec.cap . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 # 0)
4727, 30, 46syl2anc 411 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 # 0)
4826, 32, 47fprodap0 11786 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 # 0)
4948adantr 276 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘𝑦 𝐵 # 0)
5046ralrimiva 2570 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 # 0)
5150ad2antrr 488 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 # 0)
52 nfcv 2339 . . . . . . . . . . 11 𝑘 #
53 nfcv 2339 . . . . . . . . . . 11 𝑘0
5439, 52, 53nfbr 4079 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 # 0
5541breq1d 4043 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 # 0 ↔ 𝑧 / 𝑘𝐵 # 0))
5654, 55rspc 2862 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 𝐵 # 0 → 𝑧 / 𝑘𝐵 # 0))
5736, 51, 56sylc 62 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 # 0)
5857adantr 276 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → 𝑧 / 𝑘𝐵 # 0)
5925, 34, 25, 45, 49, 58divmuldivapd 8859 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = ((1 · 1) / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
60 1t1e1 9143 . . . . . . 7 (1 · 1) = 1
6160oveq1i 5932 . . . . . 6 ((1 · 1) / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
6259, 61eqtrdi 2245 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ((1 / ∏𝑘𝑦 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
6324, 62eqtrd 2229 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
64 nfcv 2339 . . . . . . 7 𝑘1
65 nfcv 2339 . . . . . . 7 𝑘 /
6664, 65, 39nfov 5952 . . . . . 6 𝑘(1 / 𝑧 / 𝑘𝐵)
6735eldifbd 3169 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
6832, 47recclapd 8808 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (1 / 𝐵) ∈ ℂ)
6944, 57recclapd 8808 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (1 / 𝑧 / 𝑘𝐵) ∈ ℂ)
7041oveq2d 5938 . . . . . 6 (𝑘 = 𝑧 → (1 / 𝐵) = (1 / 𝑧 / 𝑘𝐵))
7166, 26, 35, 67, 68, 69, 70fprodunsn 11769 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
7271adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (∏𝑘𝑦 (1 / 𝐵) · (1 / 𝑧 / 𝑘𝐵)))
7339, 26, 35, 67, 32, 44, 41fprodunsn 11769 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7473oveq2d 5938 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
7574adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (1 / (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
7663, 72, 753eqtr4d 2239 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
7776ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 (1 / 𝐵) = (1 / ∏𝑘𝑦 𝐵) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(1 / 𝐵) = (1 / ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
78 fprodrec.a . 2 (𝜑𝐴 ∈ Fin)
794, 8, 12, 16, 22, 77, 78findcard2sd 6953 1 (𝜑 → ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  csb 3084  cdif 3154  cun 3155  wss 3157  c0 3450  {csn 3622   class class class wbr 4033  (class class class)co 5922  Fincfn 6799  cc 7877  0cc0 7879  1c1 7880   · cmul 7884   # cap 8608   / cdiv 8699  cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by:  fproddivap  11795
  Copyright terms: Public domain W3C validator