ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodmul GIF version

Theorem fprodmul 11554
Description: The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodmul.1 (𝜑𝐴 ∈ Fin)
fprodmul.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodmul.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodmul (𝜑 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodmul
Dummy variables 𝑝 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1t1e1 9030 . . . . 5 (1 · 1) = 1
2 prod0 11548 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
3 prod0 11548 . . . . . 6 𝑘 ∈ ∅ 𝐶 = 1
42, 3oveq12i 5865 . . . . 5 (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶) = (1 · 1)
5 prod0 11548 . . . . 5 𝑘 ∈ ∅ (𝐵 · 𝐶) = 1
61, 4, 53eqtr4ri 2202 . . . 4 𝑘 ∈ ∅ (𝐵 · 𝐶) = (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶)
7 prodeq1 11516 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 · 𝐶) = ∏𝑘 ∈ ∅ (𝐵 · 𝐶))
8 prodeq1 11516 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
9 prodeq1 11516 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
108, 9oveq12d 5871 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶) = (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶))
116, 7, 103eqtr4a 2229 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
1211a1i 9 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
13 simprl 526 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
14 nnuz 9522 . . . . . . . . 9 ℕ = (ℤ‘1)
1513, 14eleqtrdi 2263 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
16 elnnuz 9523 . . . . . . . . . . . 12 (𝑝 ∈ ℕ ↔ 𝑝 ∈ (ℤ‘1))
1716biimpri 132 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘1) → 𝑝 ∈ ℕ)
1817adantl 275 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → 𝑝 ∈ ℕ)
19 fprodmul.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2019fmpttd 5651 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2120adantr 274 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
22 f1of 5442 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2322ad2antll 488 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
24 fco 5363 . . . . . . . . . . . . . 14 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2521, 23, 24syl2anc 409 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2625ad2antrr 485 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
27 simpr 109 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ≤ (♯‘𝐴))
28 simplr 525 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ∈ (ℤ‘1))
2913ad2antrr 485 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
3029nnzd 9333 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
31 elfz5 9973 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘1) ∧ (♯‘𝐴) ∈ ℤ) → (𝑝 ∈ (1...(♯‘𝐴)) ↔ 𝑝 ≤ (♯‘𝐴)))
3228, 30, 31syl2anc 409 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑝 ∈ (1...(♯‘𝐴)) ↔ 𝑝 ≤ (♯‘𝐴)))
3327, 32mpbird 166 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ∈ (1...(♯‘𝐴)))
3426, 33ffvelrnd 5632 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) ∈ ℂ)
35 1cnd 7936 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → 1 ∈ ℂ)
3618nnzd 9333 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → 𝑝 ∈ ℤ)
3713adantr 274 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℕ)
3837nnzd 9333 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℤ)
39 zdcle 9288 . . . . . . . . . . . 12 ((𝑝 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑝 ≤ (♯‘𝐴))
4036, 38, 39syl2anc 409 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → DECID 𝑝 ≤ (♯‘𝐴))
4134, 35, 40ifcldadc 3555 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) ∈ ℂ)
42 breq1 3992 . . . . . . . . . . . 12 (𝑛 = 𝑝 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑝 ≤ (♯‘𝐴)))
43 fveq2 5496 . . . . . . . . . . . 12 (𝑛 = 𝑝 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝))
4442, 43ifbieq1d 3548 . . . . . . . . . . 11 (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1))
45 eqid 2170 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))
4644, 45fvmptg 5572 . . . . . . . . . 10 ((𝑝 ∈ ℕ ∧ if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1))
4718, 41, 46syl2anc 409 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1))
4847, 41eqeltrd 2247 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) ∈ ℂ)
49 fprodmul.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
5049fmpttd 5651 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
5150adantr 274 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
52 fco 5363 . . . . . . . . . . . . . 14 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
5351, 23, 52syl2anc 409 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
5453ad2antrr 485 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
5554, 33ffvelrnd 5632 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝) ∈ ℂ)
5655, 35, 40ifcldadc 3555 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1) ∈ ℂ)
57 fveq2 5496 . . . . . . . . . . . 12 (𝑛 = 𝑝 → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝))
5842, 57ifbieq1d 3548 . . . . . . . . . . 11 (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1))
59 eqid 2170 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))
6058, 59fvmptg 5572 . . . . . . . . . 10 ((𝑝 ∈ ℕ ∧ if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1))
6118, 56, 60syl2anc 409 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1))
6261, 56eqeltrd 2247 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝) ∈ ℂ)
6323ad2antrr 485 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
6463, 33ffvelrnd 5632 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑓𝑝) ∈ 𝐴)
65 csbov12g 5892 . . . . . . . . . . . . . 14 ((𝑓𝑝) ∈ 𝐴(𝑓𝑝) / 𝑘(𝐵 · 𝐶) = ((𝑓𝑝) / 𝑘𝐵 · (𝑓𝑝) / 𝑘𝐶))
6664, 65syl 14 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑓𝑝) / 𝑘(𝐵 · 𝐶) = ((𝑓𝑝) / 𝑘𝐵 · (𝑓𝑝) / 𝑘𝐶))
6719, 49mulcld 7940 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
6867ralrimiva 2543 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
6968ad3antrrr 489 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ∀𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
70 nfcsb1v 3082 . . . . . . . . . . . . . . . . 17 𝑘(𝑓𝑝) / 𝑘(𝐵 · 𝐶)
7170nfel1 2323 . . . . . . . . . . . . . . . 16 𝑘(𝑓𝑝) / 𝑘(𝐵 · 𝐶) ∈ ℂ
72 csbeq1a 3058 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑝) → (𝐵 · 𝐶) = (𝑓𝑝) / 𝑘(𝐵 · 𝐶))
7372eleq1d 2239 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑝) → ((𝐵 · 𝐶) ∈ ℂ ↔ (𝑓𝑝) / 𝑘(𝐵 · 𝐶) ∈ ℂ))
7471, 73rspc 2828 . . . . . . . . . . . . . . 15 ((𝑓𝑝) ∈ 𝐴 → (∀𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ → (𝑓𝑝) / 𝑘(𝐵 · 𝐶) ∈ ℂ))
7564, 69, 74sylc 62 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑓𝑝) / 𝑘(𝐵 · 𝐶) ∈ ℂ)
76 eqid 2170 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐵 · 𝐶)) = (𝑘𝐴 ↦ (𝐵 · 𝐶))
7776fvmpts 5574 . . . . . . . . . . . . . 14 (((𝑓𝑝) ∈ 𝐴(𝑓𝑝) / 𝑘(𝐵 · 𝐶) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘(𝐵 · 𝐶))
7864, 75, 77syl2anc 409 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘(𝐵 · 𝐶))
7919ralrimiva 2543 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
8079ad3antrrr 489 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
81 nfcsb1v 3082 . . . . . . . . . . . . . . . . . 18 𝑘(𝑓𝑝) / 𝑘𝐵
8281nfel1 2323 . . . . . . . . . . . . . . . . 17 𝑘(𝑓𝑝) / 𝑘𝐵 ∈ ℂ
83 csbeq1a 3058 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑓𝑝) → 𝐵 = (𝑓𝑝) / 𝑘𝐵)
8483eleq1d 2239 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑝) → (𝐵 ∈ ℂ ↔ (𝑓𝑝) / 𝑘𝐵 ∈ ℂ))
8582, 84rspc 2828 . . . . . . . . . . . . . . . 16 ((𝑓𝑝) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑝) / 𝑘𝐵 ∈ ℂ))
8664, 80, 85sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑓𝑝) / 𝑘𝐵 ∈ ℂ)
87 eqid 2170 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
8887fvmpts 5574 . . . . . . . . . . . . . . 15 (((𝑓𝑝) ∈ 𝐴(𝑓𝑝) / 𝑘𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘𝐵)
8964, 86, 88syl2anc 409 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵)‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘𝐵)
9049ralrimiva 2543 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
9190ad3antrrr 489 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ∀𝑘𝐴 𝐶 ∈ ℂ)
92 nfcsb1v 3082 . . . . . . . . . . . . . . . . . 18 𝑘(𝑓𝑝) / 𝑘𝐶
9392nfel1 2323 . . . . . . . . . . . . . . . . 17 𝑘(𝑓𝑝) / 𝑘𝐶 ∈ ℂ
94 csbeq1a 3058 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑓𝑝) → 𝐶 = (𝑓𝑝) / 𝑘𝐶)
9594eleq1d 2239 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑝) → (𝐶 ∈ ℂ ↔ (𝑓𝑝) / 𝑘𝐶 ∈ ℂ))
9693, 95rspc 2828 . . . . . . . . . . . . . . . 16 ((𝑓𝑝) ∈ 𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → (𝑓𝑝) / 𝑘𝐶 ∈ ℂ))
9764, 91, 96sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑓𝑝) / 𝑘𝐶 ∈ ℂ)
98 eqid 2170 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
9998fvmpts 5574 . . . . . . . . . . . . . . 15 (((𝑓𝑝) ∈ 𝐴(𝑓𝑝) / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘𝐶)
10064, 97, 99syl2anc 409 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐶)‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘𝐶)
10189, 100oveq12d 5871 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵)‘(𝑓𝑝)) · ((𝑘𝐴𝐶)‘(𝑓𝑝))) = ((𝑓𝑝) / 𝑘𝐵 · (𝑓𝑝) / 𝑘𝐶))
10266, 78, 1013eqtr4d 2213 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)) = (((𝑘𝐴𝐵)‘(𝑓𝑝)) · ((𝑘𝐴𝐶)‘(𝑓𝑝))))
103 fvco3 5567 . . . . . . . . . . . . 13 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑝 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)))
10463, 33, 103syl2anc 409 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)))
105 fvco3 5567 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑝 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) = ((𝑘𝐴𝐵)‘(𝑓𝑝)))
10663, 33, 105syl2anc 409 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) = ((𝑘𝐴𝐵)‘(𝑓𝑝)))
107 fvco3 5567 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑝 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝) = ((𝑘𝐴𝐶)‘(𝑓𝑝)))
10863, 33, 107syl2anc 409 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝) = ((𝑘𝐴𝐶)‘(𝑓𝑝)))
109106, 108oveq12d 5871 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) · (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝)) = (((𝑘𝐴𝐵)‘(𝑓𝑝)) · ((𝑘𝐴𝐶)‘(𝑓𝑝))))
110102, 104, 1093eqtr4d 2213 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) · (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝)))
11127iftrued 3533 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝))
11227iftrued 3533 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝))
11327iftrued 3533 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1) = (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝))
114112, 113oveq12d 5871 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) · (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝)))
115110, 111, 1143eqtr4d 2213 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)))
1161eqcomi 2174 . . . . . . . . . . 11 1 = (1 · 1)
117 simpr 109 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → ¬ 𝑝 ≤ (♯‘𝐴))
118117iffalsed 3536 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = 1)
119117iffalsed 3536 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) = 1)
120117iffalsed 3536 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1) = 1)
121119, 120oveq12d 5871 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)) = (1 · 1))
122116, 118, 1213eqtr4a 2229 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)))
123 exmiddc 831 . . . . . . . . . . 11 (DECID 𝑝 ≤ (♯‘𝐴) → (𝑝 ≤ (♯‘𝐴) ∨ ¬ 𝑝 ≤ (♯‘𝐴)))
12440, 123syl 14 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → (𝑝 ≤ (♯‘𝐴) ∨ ¬ 𝑝 ≤ (♯‘𝐴)))
125115, 122, 124mpjaodan 793 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)))
12678, 75eqeltrd 2247 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)) ∈ ℂ)
127104, 126eqeltrd 2247 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) ∈ ℂ)
128127, 35, 40ifcldadc 3555 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) ∈ ℂ)
129 fveq2 5496 . . . . . . . . . . . 12 (𝑛 = 𝑝 → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝))
13042, 129ifbieq1d 3548 . . . . . . . . . . 11 (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1))
131 eqid 2170 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))
132130, 131fvmptg 5572 . . . . . . . . . 10 ((𝑝 ∈ ℕ ∧ if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1))
13318, 128, 132syl2anc 409 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1))
13447, 61oveq12d 5871 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → (((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝)) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)))
135125, 133, 1343eqtr4d 2213 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))‘𝑝) = (((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝)))
13615, 48, 62, 135prod3fmul 11504 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴))))
137 fveq2 5496 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)))
138 simprr 527 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
13967fmpttd 5651 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐵 · 𝐶)):𝐴⟶ℂ)
140139adantr 274 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 · 𝐶)):𝐴⟶ℂ)
141140ffvelrnda 5631 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) ∈ ℂ)
142 fvco3 5567 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)))
14323, 142sylan 281 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)))
144137, 13, 138, 141, 143fprodseq 11546 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)))
145 fveq2 5496 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
14621ffvelrnda 5631 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
147 fvco3 5567 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
14823, 147sylan 281 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
149145, 13, 138, 146, 148fprodseq 11546 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)))
150 fveq2 5496 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
15151ffvelrnda 5631 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
152 fvco3 5567 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
15323, 152sylan 281 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
154150, 13, 138, 151, 153fprodseq 11546 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)))
155149, 154oveq12d 5871 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴))))
156136, 144, 1553eqtr4d 2213 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
157 prodfct 11550 . . . . . . . 8 (∀𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 · 𝐶))
15868, 157syl 14 . . . . . . 7 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 · 𝐶))
159158adantr 274 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 · 𝐶))
160 prodfct 11550 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵)
16179, 160syl 14 . . . . . . . 8 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵)
162 prodfct 11550 . . . . . . . . 9 (∀𝑘𝐴 𝐶 ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
16390, 162syl 14 . . . . . . . 8 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
164161, 163oveq12d 5871 . . . . . . 7 (𝜑 → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
165164adantr 274 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
166156, 159, 1653eqtr3d 2211 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
167166expr 373 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
168167exlimdv 1812 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
169168expimpd 361 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
170 fprodmul.1 . . 3 (𝜑𝐴 ∈ Fin)
171 fz1f1o 11338 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
172170, 171syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
17312, 169, 172mpjaod 713 1 (𝜑 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wex 1485  wcel 2141  wral 2448  csb 3049  c0 3414  ifcif 3526   class class class wbr 3989  cmpt 4050  ccom 4615  wf 5194  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  Fincfn 6718  cc 7772  1c1 7775   · cmul 7779  cle 7955  cn 8878  cz 9212  cuz 9487  ...cfz 9965  seqcseq 10401  chash 10709  cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514
This theorem is referenced by:  fprodsplitdc  11559  fproddivap  11593
  Copyright terms: Public domain W3C validator