| Step | Hyp | Ref
 | Expression | 
| 1 |   | 1t1e1 9143 | 
. . . . 5
⊢ (1
· 1) = 1 | 
| 2 |   | prod0 11750 | 
. . . . . 6
⊢
∏𝑘 ∈
∅ 𝐵 =
1 | 
| 3 |   | prod0 11750 | 
. . . . . 6
⊢
∏𝑘 ∈
∅ 𝐶 =
1 | 
| 4 | 2, 3 | oveq12i 5934 | 
. . . . 5
⊢
(∏𝑘 ∈
∅ 𝐵 ·
∏𝑘 ∈ ∅
𝐶) = (1 ·
1) | 
| 5 |   | prod0 11750 | 
. . . . 5
⊢
∏𝑘 ∈
∅ (𝐵 · 𝐶) = 1 | 
| 6 | 1, 4, 5 | 3eqtr4ri 2228 | 
. . . 4
⊢
∏𝑘 ∈
∅ (𝐵 · 𝐶) = (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶) | 
| 7 |   | prodeq1 11718 | 
. . . 4
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = ∏𝑘 ∈ ∅ (𝐵 · 𝐶)) | 
| 8 |   | prodeq1 11718 | 
. . . . 5
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) | 
| 9 |   | prodeq1 11718 | 
. . . . 5
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶) | 
| 10 | 8, 9 | oveq12d 5940 | 
. . . 4
⊢ (𝐴 = ∅ → (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶) = (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶)) | 
| 11 | 6, 7, 10 | 3eqtr4a 2255 | 
. . 3
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶)) | 
| 12 | 11 | a1i 9 | 
. 2
⊢ (𝜑 → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶))) | 
| 13 |   | simprl 529 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) | 
| 14 |   | nnuz 9637 | 
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) | 
| 15 | 13, 14 | eleqtrdi 2289 | 
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) | 
| 16 |   | elnnuz 9638 | 
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ℕ ↔ 𝑝 ∈
(ℤ≥‘1)) | 
| 17 | 16 | biimpri 133 | 
. . . . . . . . . . 11
⊢ (𝑝 ∈
(ℤ≥‘1) → 𝑝 ∈ ℕ) | 
| 18 | 17 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ 𝑝 ∈
ℕ) | 
| 19 |   | fprodmul.2 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 20 | 19 | fmpttd 5717 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) | 
| 21 | 20 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) | 
| 22 |   | f1of 5504 | 
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) | 
| 23 | 22 | ad2antll 491 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) | 
| 24 |   | fco 5423 | 
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) | 
| 25 | 21, 23, 24 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) | 
| 26 | 25 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) | 
| 27 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
𝑝 ≤ (♯‘𝐴)) | 
| 28 |   | simplr 528 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
𝑝 ∈
(ℤ≥‘1)) | 
| 29 | 13 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(♯‘𝐴) ∈
ℕ) | 
| 30 | 29 | nnzd 9447 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(♯‘𝐴) ∈
ℤ) | 
| 31 |   | elfz5 10092 | 
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈
(ℤ≥‘1) ∧ (♯‘𝐴) ∈ ℤ) → (𝑝 ∈ (1...(♯‘𝐴)) ↔ 𝑝 ≤ (♯‘𝐴))) | 
| 32 | 28, 30, 31 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(𝑝 ∈
(1...(♯‘𝐴))
↔ 𝑝 ≤
(♯‘𝐴))) | 
| 33 | 27, 32 | mpbird 167 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
𝑝 ∈
(1...(♯‘𝐴))) | 
| 34 | 26, 33 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝) ∈ ℂ) | 
| 35 |   | 1cnd 8042 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ≤
(♯‘𝐴)) → 1
∈ ℂ) | 
| 36 | 18 | nnzd 9447 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ 𝑝 ∈
ℤ) | 
| 37 | 13 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ (♯‘𝐴)
∈ ℕ) | 
| 38 | 37 | nnzd 9447 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ (♯‘𝐴)
∈ ℤ) | 
| 39 |   | zdcle 9402 | 
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℤ ∧
(♯‘𝐴) ∈
ℤ) → DECID 𝑝 ≤ (♯‘𝐴)) | 
| 40 | 36, 38, 39 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ DECID 𝑝 ≤ (♯‘𝐴)) | 
| 41 | 34, 35, 40 | ifcldadc 3590 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) | 
| 42 |   | breq1 4036 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑝 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑝 ≤ (♯‘𝐴))) | 
| 43 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑝 → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝)) | 
| 44 | 42, 43 | ifbieq1d 3583 | 
. . . . . . . . . . 11
⊢ (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1) = if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1)) | 
| 45 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1)) | 
| 46 | 44, 45 | fvmptg 5637 | 
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℕ ∧ if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1)) | 
| 47 | 18, 41, 46 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1)) | 
| 48 | 47, 41 | eqeltrd 2273 | 
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) ∈ ℂ) | 
| 49 |   | fprodmul.3 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | 
| 50 | 49 | fmpttd 5717 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) | 
| 51 | 50 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) | 
| 52 |   | fco 5423 | 
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) | 
| 53 | 51, 23, 52 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) | 
| 54 | 53 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) | 
| 55 | 54, 33 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝) ∈ ℂ) | 
| 56 | 55, 35, 40 | ifcldadc 3590 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) | 
| 57 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑝 → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝)) | 
| 58 | 42, 57 | ifbieq1d 3583 | 
. . . . . . . . . . 11
⊢ (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1) = if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1)) | 
| 59 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1)) | 
| 60 | 58, 59 | fvmptg 5637 | 
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℕ ∧ if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1)) | 
| 61 | 18, 56, 60 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1)) | 
| 62 | 61, 56 | eqeltrd 2273 | 
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝) ∈ ℂ) | 
| 63 | 23 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
𝑓:(1...(♯‘𝐴))⟶𝐴) | 
| 64 | 63, 33 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(𝑓‘𝑝) ∈ 𝐴) | 
| 65 |   | csbov12g 5961 | 
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑝) ∈ 𝐴 → ⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶) = (⦋(𝑓‘𝑝) / 𝑘⦌𝐵 · ⦋(𝑓‘𝑝) / 𝑘⦌𝐶)) | 
| 66 | 64, 65 | syl 14 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶) = (⦋(𝑓‘𝑝) / 𝑘⦌𝐵 · ⦋(𝑓‘𝑝) / 𝑘⦌𝐶)) | 
| 67 | 19, 49 | mulcld 8047 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 · 𝐶) ∈ ℂ) | 
| 68 | 67 | ralrimiva 2570 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐵 · 𝐶) ∈ ℂ) | 
| 69 | 68 | ad3antrrr 492 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
∀𝑘 ∈ 𝐴 (𝐵 · 𝐶) ∈ ℂ) | 
| 70 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶) | 
| 71 | 70 | nfel1 2350 | 
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶) ∈ ℂ | 
| 72 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑓‘𝑝) → (𝐵 · 𝐶) = ⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶)) | 
| 73 | 72 | eleq1d 2265 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑓‘𝑝) → ((𝐵 · 𝐶) ∈ ℂ ↔
⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶) ∈ ℂ)) | 
| 74 | 71, 73 | rspc 2862 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘𝑝) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝐵 · 𝐶) ∈ ℂ →
⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶) ∈ ℂ)) | 
| 75 | 64, 69, 74 | sylc 62 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶) ∈ ℂ) | 
| 76 |   | eqid 2196 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) = (𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) | 
| 77 | 76 | fvmpts 5639 | 
. . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑝) ∈ 𝐴 ∧ ⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶) ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑝)) = ⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶)) | 
| 78 | 64, 75, 77 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑝)) = ⦋(𝑓‘𝑝) / 𝑘⦌(𝐵 · 𝐶)) | 
| 79 | 19 | ralrimiva 2570 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 80 | 79 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 81 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋(𝑓‘𝑝) / 𝑘⦌𝐵 | 
| 82 | 81 | nfel1 2350 | 
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋(𝑓‘𝑝) / 𝑘⦌𝐵 ∈ ℂ | 
| 83 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑓‘𝑝) → 𝐵 = ⦋(𝑓‘𝑝) / 𝑘⦌𝐵) | 
| 84 | 83 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑓‘𝑝) → (𝐵 ∈ ℂ ↔ ⦋(𝑓‘𝑝) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 85 | 82, 84 | rspc 2862 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑝) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝑓‘𝑝) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 86 | 64, 80, 85 | sylc 62 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
⦋(𝑓‘𝑝) / 𝑘⦌𝐵 ∈ ℂ) | 
| 87 |   | eqid 2196 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | 
| 88 | 87 | fvmpts 5639 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑓‘𝑝) ∈ 𝐴 ∧ ⦋(𝑓‘𝑝) / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑝)) = ⦋(𝑓‘𝑝) / 𝑘⦌𝐵) | 
| 89 | 64, 86, 88 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑝)) = ⦋(𝑓‘𝑝) / 𝑘⦌𝐵) | 
| 90 | 49 | ralrimiva 2570 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) | 
| 91 | 90 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) | 
| 92 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋(𝑓‘𝑝) / 𝑘⦌𝐶 | 
| 93 | 92 | nfel1 2350 | 
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋(𝑓‘𝑝) / 𝑘⦌𝐶 ∈ ℂ | 
| 94 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑓‘𝑝) → 𝐶 = ⦋(𝑓‘𝑝) / 𝑘⦌𝐶) | 
| 95 | 94 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑓‘𝑝) → (𝐶 ∈ ℂ ↔ ⦋(𝑓‘𝑝) / 𝑘⦌𝐶 ∈ ℂ)) | 
| 96 | 93, 95 | rspc 2862 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑝) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ → ⦋(𝑓‘𝑝) / 𝑘⦌𝐶 ∈ ℂ)) | 
| 97 | 64, 91, 96 | sylc 62 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
⦋(𝑓‘𝑝) / 𝑘⦌𝐶 ∈ ℂ) | 
| 98 |   | eqid 2196 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) | 
| 99 | 98 | fvmpts 5639 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑓‘𝑝) ∈ 𝐴 ∧ ⦋(𝑓‘𝑝) / 𝑘⦌𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑝)) = ⦋(𝑓‘𝑝) / 𝑘⦌𝐶) | 
| 100 | 64, 97, 99 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑝)) = ⦋(𝑓‘𝑝) / 𝑘⦌𝐶) | 
| 101 | 89, 100 | oveq12d 5940 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑝)) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑝))) = (⦋(𝑓‘𝑝) / 𝑘⦌𝐵 · ⦋(𝑓‘𝑝) / 𝑘⦌𝐶)) | 
| 102 | 66, 78, 101 | 3eqtr4d 2239 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑝)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑝)) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑝)))) | 
| 103 |   | fvco3 5632 | 
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑝 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) = ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑝))) | 
| 104 | 63, 33, 103 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) = ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑝))) | 
| 105 |   | fvco3 5632 | 
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑝 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑝))) | 
| 106 | 63, 33, 105 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑝))) | 
| 107 |   | fvco3 5632 | 
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑝 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑝))) | 
| 108 | 63, 33, 107 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑝))) | 
| 109 | 106, 108 | oveq12d 5940 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝) · (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑝)) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑝)))) | 
| 110 | 102, 104,
109 | 3eqtr4d 2239 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) = ((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝) · (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝))) | 
| 111 | 27 | iftrued 3568 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝)) | 
| 112 | 27 | iftrued 3568 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1) = (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝)) | 
| 113 | 27 | iftrued 3568 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1) = (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝)) | 
| 114 | 112, 113 | oveq12d 5940 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1)) = ((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝) · (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝))) | 
| 115 | 110, 111,
114 | 3eqtr4d 2239 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1))) | 
| 116 | 1 | eqcomi 2200 | 
. . . . . . . . . . 11
⊢ 1 = (1
· 1) | 
| 117 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ≤
(♯‘𝐴)) →
¬ 𝑝 ≤
(♯‘𝐴)) | 
| 118 | 117 | iffalsed 3571 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ≤
(♯‘𝐴)) →
if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = 1) | 
| 119 | 117 | iffalsed 3571 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ≤
(♯‘𝐴)) →
if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1) = 1) | 
| 120 | 117 | iffalsed 3571 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ≤
(♯‘𝐴)) →
if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1) = 1) | 
| 121 | 119, 120 | oveq12d 5940 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ≤
(♯‘𝐴)) →
(if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1)) = (1 · 1)) | 
| 122 | 116, 118,
121 | 3eqtr4a 2255 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ≤
(♯‘𝐴)) →
if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1))) | 
| 123 |   | exmiddc 837 | 
. . . . . . . . . . 11
⊢
(DECID 𝑝 ≤ (♯‘𝐴) → (𝑝 ≤ (♯‘𝐴) ∨ ¬ 𝑝 ≤ (♯‘𝐴))) | 
| 124 | 40, 123 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ (𝑝 ≤
(♯‘𝐴) ∨
¬ 𝑝 ≤
(♯‘𝐴))) | 
| 125 | 115, 122,
124 | mpjaodan 799 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1))) | 
| 126 | 78, 75 | eqeltrd 2273 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑝)) ∈ ℂ) | 
| 127 | 104, 126 | eqeltrd 2273 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) ∈ ℂ) | 
| 128 | 127, 35, 40 | ifcldadc 3590 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ if(𝑝 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) | 
| 129 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑝 → (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝)) | 
| 130 | 42, 129 | ifbieq1d 3583 | 
. . . . . . . . . . 11
⊢ (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1) = if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1)) | 
| 131 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1)) | 
| 132 | 130, 131 | fvmptg 5637 | 
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℕ ∧ if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1)) | 
| 133 | 18, 128, 132 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1)) | 
| 134 | 47, 61 | oveq12d 5940 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ (((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝)) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑝), 1))) | 
| 135 | 125, 133,
134 | 3eqtr4d 2239 | 
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))‘𝑝) = (((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝))) | 
| 136 | 15, 48, 62, 135 | prod3fmul 11706 | 
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)))) | 
| 137 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛))) | 
| 138 |   | simprr 531 | 
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) | 
| 139 | 67 | fmpttd 5717 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)):𝐴⟶ℂ) | 
| 140 | 139 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)):𝐴⟶ℂ) | 
| 141 | 140 | ffvelcdmda 5697 | 
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) ∈ ℂ) | 
| 142 |   | fvco3 5632 | 
. . . . . . . . 9
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛))) | 
| 143 | 23, 142 | sylan 283 | 
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛))) | 
| 144 | 137, 13, 138, 141, 143 | fprodseq 11748 | 
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴))) | 
| 145 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) | 
| 146 | 21 | ffvelcdmda 5697 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) | 
| 147 |   | fvco3 5632 | 
. . . . . . . . . 10
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) | 
| 148 | 23, 147 | sylan 283 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) | 
| 149 | 145, 13, 138, 146, 148 | fprodseq 11748 | 
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴))) | 
| 150 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) | 
| 151 | 51 | ffvelcdmda 5697 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) ∈ ℂ) | 
| 152 |   | fvco3 5632 | 
. . . . . . . . . 10
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) | 
| 153 | 23, 152 | sylan 283 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) | 
| 154 | 150, 13, 138, 151, 153 | fprodseq 11748 | 
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴))) | 
| 155 | 149, 154 | oveq12d 5940 | 
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) · ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)))) | 
| 156 | 136, 144,
155 | 3eqtr4d 2239 | 
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = (∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) · ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚))) | 
| 157 |   | prodfct 11752 | 
. . . . . . . 8
⊢
(∀𝑘 ∈
𝐴 (𝐵 · 𝐶) ∈ ℂ → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶)) | 
| 158 | 68, 157 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶)) | 
| 159 | 158 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶)) | 
| 160 |   | prodfct 11752 | 
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝐴 𝐵 ∈ ℂ → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐵) | 
| 161 | 79, 160 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐵) | 
| 162 |   | prodfct 11752 | 
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝐴 𝐶 ∈ ℂ → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐶) | 
| 163 | 90, 162 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐶) | 
| 164 | 161, 163 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝜑 → (∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) · ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶)) | 
| 165 | 164 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) · ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶)) | 
| 166 | 156, 159,
165 | 3eqtr3d 2237 | 
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶)) | 
| 167 | 166 | expr 375 | 
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶))) | 
| 168 | 167 | exlimdv 1833 | 
. . 3
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶))) | 
| 169 | 168 | expimpd 363 | 
. 2
⊢ (𝜑 → (((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶))) | 
| 170 |   | fprodmul.1 | 
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 171 |   | fz1f1o 11540 | 
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) | 
| 172 | 170, 171 | syl 14 | 
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) | 
| 173 | 12, 169, 172 | mpjaod 719 | 
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶)) |