ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodmul GIF version

Theorem fprodmul 11488
Description: The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodmul.1 (𝜑𝐴 ∈ Fin)
fprodmul.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodmul.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodmul (𝜑 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodmul
Dummy variables 𝑝 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1t1e1 8985 . . . . 5 (1 · 1) = 1
2 prod0 11482 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
3 prod0 11482 . . . . . 6 𝑘 ∈ ∅ 𝐶 = 1
42, 3oveq12i 5836 . . . . 5 (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶) = (1 · 1)
5 prod0 11482 . . . . 5 𝑘 ∈ ∅ (𝐵 · 𝐶) = 1
61, 4, 53eqtr4ri 2189 . . . 4 𝑘 ∈ ∅ (𝐵 · 𝐶) = (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶)
7 prodeq1 11450 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 · 𝐶) = ∏𝑘 ∈ ∅ (𝐵 · 𝐶))
8 prodeq1 11450 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
9 prodeq1 11450 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
108, 9oveq12d 5842 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶) = (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶))
116, 7, 103eqtr4a 2216 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
1211a1i 9 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
13 simprl 521 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
14 nnuz 9474 . . . . . . . . 9 ℕ = (ℤ‘1)
1513, 14eleqtrdi 2250 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
16 elnnuz 9475 . . . . . . . . . . . 12 (𝑝 ∈ ℕ ↔ 𝑝 ∈ (ℤ‘1))
1716biimpri 132 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘1) → 𝑝 ∈ ℕ)
1817adantl 275 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → 𝑝 ∈ ℕ)
19 fprodmul.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2019fmpttd 5622 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2120adantr 274 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
22 f1of 5414 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2322ad2antll 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
24 fco 5335 . . . . . . . . . . . . . 14 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2521, 23, 24syl2anc 409 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2625ad2antrr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
27 simpr 109 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ≤ (♯‘𝐴))
28 simplr 520 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ∈ (ℤ‘1))
2913ad2antrr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
3029nnzd 9285 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
31 elfz5 9920 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘1) ∧ (♯‘𝐴) ∈ ℤ) → (𝑝 ∈ (1...(♯‘𝐴)) ↔ 𝑝 ≤ (♯‘𝐴)))
3228, 30, 31syl2anc 409 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑝 ∈ (1...(♯‘𝐴)) ↔ 𝑝 ≤ (♯‘𝐴)))
3327, 32mpbird 166 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ∈ (1...(♯‘𝐴)))
3426, 33ffvelrnd 5603 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) ∈ ℂ)
35 1cnd 7894 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → 1 ∈ ℂ)
3618nnzd 9285 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → 𝑝 ∈ ℤ)
3713adantr 274 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℕ)
3837nnzd 9285 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℤ)
39 zdcle 9240 . . . . . . . . . . . 12 ((𝑝 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑝 ≤ (♯‘𝐴))
4036, 38, 39syl2anc 409 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → DECID 𝑝 ≤ (♯‘𝐴))
4134, 35, 40ifcldadc 3534 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) ∈ ℂ)
42 breq1 3968 . . . . . . . . . . . 12 (𝑛 = 𝑝 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑝 ≤ (♯‘𝐴)))
43 fveq2 5468 . . . . . . . . . . . 12 (𝑛 = 𝑝 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝))
4442, 43ifbieq1d 3527 . . . . . . . . . . 11 (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1))
45 eqid 2157 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))
4644, 45fvmptg 5544 . . . . . . . . . 10 ((𝑝 ∈ ℕ ∧ if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1))
4718, 41, 46syl2anc 409 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1))
4847, 41eqeltrd 2234 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) ∈ ℂ)
49 fprodmul.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
5049fmpttd 5622 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
5150adantr 274 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
52 fco 5335 . . . . . . . . . . . . . 14 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
5351, 23, 52syl2anc 409 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
5453ad2antrr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
5554, 33ffvelrnd 5603 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝) ∈ ℂ)
5655, 35, 40ifcldadc 3534 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1) ∈ ℂ)
57 fveq2 5468 . . . . . . . . . . . 12 (𝑛 = 𝑝 → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝))
5842, 57ifbieq1d 3527 . . . . . . . . . . 11 (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1))
59 eqid 2157 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))
6058, 59fvmptg 5544 . . . . . . . . . 10 ((𝑝 ∈ ℕ ∧ if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1))
6118, 56, 60syl2anc 409 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1))
6261, 56eqeltrd 2234 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝) ∈ ℂ)
6323ad2antrr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
6463, 33ffvelrnd 5603 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑓𝑝) ∈ 𝐴)
65 csbov12g 5860 . . . . . . . . . . . . . 14 ((𝑓𝑝) ∈ 𝐴(𝑓𝑝) / 𝑘(𝐵 · 𝐶) = ((𝑓𝑝) / 𝑘𝐵 · (𝑓𝑝) / 𝑘𝐶))
6664, 65syl 14 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑓𝑝) / 𝑘(𝐵 · 𝐶) = ((𝑓𝑝) / 𝑘𝐵 · (𝑓𝑝) / 𝑘𝐶))
6719, 49mulcld 7898 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
6867ralrimiva 2530 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
6968ad3antrrr 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ∀𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
70 nfcsb1v 3064 . . . . . . . . . . . . . . . . 17 𝑘(𝑓𝑝) / 𝑘(𝐵 · 𝐶)
7170nfel1 2310 . . . . . . . . . . . . . . . 16 𝑘(𝑓𝑝) / 𝑘(𝐵 · 𝐶) ∈ ℂ
72 csbeq1a 3040 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑝) → (𝐵 · 𝐶) = (𝑓𝑝) / 𝑘(𝐵 · 𝐶))
7372eleq1d 2226 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑝) → ((𝐵 · 𝐶) ∈ ℂ ↔ (𝑓𝑝) / 𝑘(𝐵 · 𝐶) ∈ ℂ))
7471, 73rspc 2810 . . . . . . . . . . . . . . 15 ((𝑓𝑝) ∈ 𝐴 → (∀𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ → (𝑓𝑝) / 𝑘(𝐵 · 𝐶) ∈ ℂ))
7564, 69, 74sylc 62 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑓𝑝) / 𝑘(𝐵 · 𝐶) ∈ ℂ)
76 eqid 2157 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐵 · 𝐶)) = (𝑘𝐴 ↦ (𝐵 · 𝐶))
7776fvmpts 5546 . . . . . . . . . . . . . 14 (((𝑓𝑝) ∈ 𝐴(𝑓𝑝) / 𝑘(𝐵 · 𝐶) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘(𝐵 · 𝐶))
7864, 75, 77syl2anc 409 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘(𝐵 · 𝐶))
7919ralrimiva 2530 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
8079ad3antrrr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
81 nfcsb1v 3064 . . . . . . . . . . . . . . . . . 18 𝑘(𝑓𝑝) / 𝑘𝐵
8281nfel1 2310 . . . . . . . . . . . . . . . . 17 𝑘(𝑓𝑝) / 𝑘𝐵 ∈ ℂ
83 csbeq1a 3040 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑓𝑝) → 𝐵 = (𝑓𝑝) / 𝑘𝐵)
8483eleq1d 2226 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑝) → (𝐵 ∈ ℂ ↔ (𝑓𝑝) / 𝑘𝐵 ∈ ℂ))
8582, 84rspc 2810 . . . . . . . . . . . . . . . 16 ((𝑓𝑝) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑝) / 𝑘𝐵 ∈ ℂ))
8664, 80, 85sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑓𝑝) / 𝑘𝐵 ∈ ℂ)
87 eqid 2157 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
8887fvmpts 5546 . . . . . . . . . . . . . . 15 (((𝑓𝑝) ∈ 𝐴(𝑓𝑝) / 𝑘𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘𝐵)
8964, 86, 88syl2anc 409 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵)‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘𝐵)
9049ralrimiva 2530 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
9190ad3antrrr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ∀𝑘𝐴 𝐶 ∈ ℂ)
92 nfcsb1v 3064 . . . . . . . . . . . . . . . . . 18 𝑘(𝑓𝑝) / 𝑘𝐶
9392nfel1 2310 . . . . . . . . . . . . . . . . 17 𝑘(𝑓𝑝) / 𝑘𝐶 ∈ ℂ
94 csbeq1a 3040 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑓𝑝) → 𝐶 = (𝑓𝑝) / 𝑘𝐶)
9594eleq1d 2226 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑝) → (𝐶 ∈ ℂ ↔ (𝑓𝑝) / 𝑘𝐶 ∈ ℂ))
9693, 95rspc 2810 . . . . . . . . . . . . . . . 16 ((𝑓𝑝) ∈ 𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → (𝑓𝑝) / 𝑘𝐶 ∈ ℂ))
9764, 91, 96sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑓𝑝) / 𝑘𝐶 ∈ ℂ)
98 eqid 2157 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
9998fvmpts 5546 . . . . . . . . . . . . . . 15 (((𝑓𝑝) ∈ 𝐴(𝑓𝑝) / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘𝐶)
10064, 97, 99syl2anc 409 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐶)‘(𝑓𝑝)) = (𝑓𝑝) / 𝑘𝐶)
10189, 100oveq12d 5842 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵)‘(𝑓𝑝)) · ((𝑘𝐴𝐶)‘(𝑓𝑝))) = ((𝑓𝑝) / 𝑘𝐵 · (𝑓𝑝) / 𝑘𝐶))
10266, 78, 1013eqtr4d 2200 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)) = (((𝑘𝐴𝐵)‘(𝑓𝑝)) · ((𝑘𝐴𝐶)‘(𝑓𝑝))))
103 fvco3 5539 . . . . . . . . . . . . 13 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑝 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)))
10463, 33, 103syl2anc 409 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)))
105 fvco3 5539 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑝 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) = ((𝑘𝐴𝐵)‘(𝑓𝑝)))
10663, 33, 105syl2anc 409 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) = ((𝑘𝐴𝐵)‘(𝑓𝑝)))
107 fvco3 5539 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑝 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝) = ((𝑘𝐴𝐶)‘(𝑓𝑝)))
10863, 33, 107syl2anc 409 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝) = ((𝑘𝐴𝐶)‘(𝑓𝑝)))
109106, 108oveq12d 5842 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) · (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝)) = (((𝑘𝐴𝐵)‘(𝑓𝑝)) · ((𝑘𝐴𝐶)‘(𝑓𝑝))))
110102, 104, 1093eqtr4d 2200 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) · (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝)))
11127iftrued 3512 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝))
11227iftrued 3512 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝))
11327iftrued 3512 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1) = (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝))
114112, 113oveq12d 5842 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝) · (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝)))
115110, 111, 1143eqtr4d 2200 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)))
1161eqcomi 2161 . . . . . . . . . . 11 1 = (1 · 1)
117 simpr 109 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → ¬ 𝑝 ≤ (♯‘𝐴))
118117iffalsed 3515 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = 1)
119117iffalsed 3515 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) = 1)
120117iffalsed 3515 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1) = 1)
121119, 120oveq12d 5842 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)) = (1 · 1))
122116, 118, 1213eqtr4a 2216 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)))
123 exmiddc 822 . . . . . . . . . . 11 (DECID 𝑝 ≤ (♯‘𝐴) → (𝑝 ≤ (♯‘𝐴) ∨ ¬ 𝑝 ≤ (♯‘𝐴)))
12440, 123syl 14 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → (𝑝 ≤ (♯‘𝐴) ∨ ¬ 𝑝 ≤ (♯‘𝐴)))
125115, 122, 124mpjaodan 788 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)))
12678, 75eqeltrd 2234 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑝)) ∈ ℂ)
127104, 126eqeltrd 2234 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) ∧ 𝑝 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝) ∈ ℂ)
128127, 35, 40ifcldadc 3534 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) ∈ ℂ)
129 fveq2 5468 . . . . . . . . . . . 12 (𝑛 = 𝑝 → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝))
13042, 129ifbieq1d 3527 . . . . . . . . . . 11 (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1))
131 eqid 2157 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))
132130, 131fvmptg 5544 . . . . . . . . . 10 ((𝑝 ∈ ℕ ∧ if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1))
13318, 128, 132syl2anc 409 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑝), 1))
13447, 61oveq12d 5842 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → (((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝)) = (if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑝), 1) · if(𝑝 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑝), 1)))
135125, 133, 1343eqtr4d 2200 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1))‘𝑝) = (((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1))‘𝑝) · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1))‘𝑝)))
13615, 48, 62, 135prod3fmul 11438 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴))))
137 fveq2 5468 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)))
138 simprr 522 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
13967fmpttd 5622 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐵 · 𝐶)):𝐴⟶ℂ)
140139adantr 274 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 · 𝐶)):𝐴⟶ℂ)
141140ffvelrnda 5602 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) ∈ ℂ)
142 fvco3 5539 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)))
14323, 142sylan 281 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘(𝑓𝑛)))
144137, 13, 138, 141, 143fprodseq 11480 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)))
145 fveq2 5468 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
14621ffvelrnda 5602 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
147 fvco3 5539 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
14823, 147sylan 281 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
149145, 13, 138, 146, 148fprodseq 11480 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)))
150 fveq2 5468 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
15151ffvelrnda 5602 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
152 fvco3 5539 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
15323, 152sylan 281 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
154150, 13, 138, 151, 153fprodseq 11480 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)))
155149, 154oveq12d 5842 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛), 1)))‘(♯‘𝐴))))
156136, 144, 1553eqtr4d 2200 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
157 prodfct 11484 . . . . . . . 8 (∀𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 · 𝐶))
15868, 157syl 14 . . . . . . 7 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 · 𝐶))
159158adantr 274 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 · 𝐶))
160 prodfct 11484 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵)
16179, 160syl 14 . . . . . . . 8 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵)
162 prodfct 11484 . . . . . . . . 9 (∀𝑘𝐴 𝐶 ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
16390, 162syl 14 . . . . . . . 8 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
164161, 163oveq12d 5842 . . . . . . 7 (𝜑 → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
165164adantr 274 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) · ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
166156, 159, 1653eqtr3d 2198 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
167166expr 373 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
168167exlimdv 1799 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
169168expimpd 361 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶)))
170 fprodmul.1 . . 3 (𝜑𝐴 ∈ Fin)
171 fz1f1o 11272 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
172170, 171syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
17312, 169, 172mpjaod 708 1 (𝜑 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820   = wceq 1335  wex 1472  wcel 2128  wral 2435  csb 3031  c0 3394  ifcif 3505   class class class wbr 3965  cmpt 4025  ccom 4590  wf 5166  1-1-ontowf1o 5169  cfv 5170  (class class class)co 5824  Fincfn 6685  cc 7730  1c1 7733   · cmul 7737  cle 7913  cn 8833  cz 9167  cuz 9439  ...cfz 9912  seqcseq 10344  chash 10649  cprod 11447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-frec 6338  df-1o 6363  df-oadd 6367  df-er 6480  df-en 6686  df-dom 6687  df-fin 6688  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-fz 9913  df-fzo 10042  df-seqfrec 10345  df-exp 10419  df-ihash 10650  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-clim 11176  df-proddc 11448
This theorem is referenced by:  fprodsplitdc  11493  fproddivap  11527
  Copyright terms: Public domain W3C validator