Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveq1i | GIF version |
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
oveq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
oveq1i | ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | oveq1 5825 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 (class class class)co 5818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5132 df-fv 5175 df-ov 5821 |
This theorem is referenced by: caov12 6003 map1 6750 halfnqq 7313 prarloclem5 7403 m1m1sr 7664 caucvgsrlemfv 7694 caucvgsr 7705 pitonnlem1 7748 axi2m1 7778 axcnre 7784 axcaucvg 7803 mvrraddi 8075 mvlladdi 8076 negsubdi 8114 mul02 8245 mulneg1 8253 mulreim 8462 recextlem1 8508 recdivap 8574 2p2e4 8943 2times 8944 3p2e5 8957 3p3e6 8958 4p2e6 8959 4p3e7 8960 4p4e8 8961 5p2e7 8962 5p3e8 8963 5p4e9 8964 6p2e8 8965 6p3e9 8966 7p2e9 8967 1mhlfehlf 9034 8th4div3 9035 halfpm6th 9036 nneoor 9249 9p1e10 9280 dfdec10 9281 num0h 9289 numsuc 9291 dec10p 9320 numma 9321 nummac 9322 numma2c 9323 numadd 9324 numaddc 9325 nummul2c 9327 decaddci 9338 decsubi 9340 decmul1 9341 5p5e10 9348 6p4e10 9349 7p3e10 9352 8p2e10 9357 decbin0 9417 decbin2 9418 elfzp1b 9981 elfzm1b 9982 fz01or 9995 fz1ssfz0 10001 qbtwnrelemcalc 10137 fldiv4p1lem1div2 10186 1tonninf 10321 mulexpzap 10441 expaddzap 10445 sq4e2t8 10498 cu2 10499 i3 10502 iexpcyc 10505 binom2i 10509 binom3 10517 3dec 10570 faclbnd 10597 bcm1k 10616 bcp1nk 10618 bcpasc 10622 hashp1i 10666 hashxp 10682 imre 10733 crim 10740 remullem 10753 resqrexlemfp1 10891 resqrexlemover 10892 resqrexlemcalc1 10896 resqrexlemnm 10900 absexpzap 10962 absimle 10966 amgm2 11000 maxabslemlub 11089 fsumconst 11333 modfsummod 11337 binomlem 11362 binom11 11365 arisum 11377 arisum2 11378 georeclim 11392 geo2sum 11393 mertenslemi1 11414 mertenslem2 11415 mertensabs 11416 prodfrecap 11425 fprodm1s 11480 fprodp1s 11481 fprodrec 11508 fprodmodd 11520 efzval 11562 resinval 11594 recosval 11595 efi4p 11596 tan0 11610 efival 11611 cosadd 11616 cos2tsin 11630 ef01bndlem 11635 cos1bnd 11638 cos2bnd 11639 absefib 11649 efieq1re 11650 demoivreALT 11652 eirraplem 11655 3dvdsdec 11737 3dvds2dec 11738 odd2np1 11745 nn0o1gt2 11777 nn0o 11779 flodddiv4 11806 algrp1 11903 3lcm2e6woprm 11943 nn0gcdsq 12054 phiprmpw 12074 prmdiv 12087 prmdiveq 12088 cnmpt1res 12656 rerestcntop 12910 dvfvalap 13010 dvcnp2cntop 13023 dveflem 13047 reeff1oleme 13053 sin0pilem1 13062 sinhalfpilem 13072 cospi 13081 eulerid 13083 cos2pi 13085 ef2kpi 13087 sinhalfpip 13101 sinhalfpim 13102 coshalfpip 13103 coshalfpim 13104 sincosq3sgn 13109 sincosq4sgn 13110 cosq23lt0 13114 tangtx 13119 sincos4thpi 13121 sincos6thpi 13123 cosq34lt1 13131 rplogb1 13225 2logb9irr 13248 sqrt2cxp2logb9e3 13252 2logb9irrap 13254 binom4 13256 ex-fl 13261 ex-exp 13263 ex-bc 13265 012of 13528 2o01f 13529 qdencn 13561 isomninnlem 13564 iswomninnlem 13583 ismkvnnlem 13586 |
Copyright terms: Public domain | W3C validator |