| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8lt9 | GIF version | ||
| Description: 8 is less than 9. (Contributed by Mario Carneiro, 19-Feb-2014.) |
| Ref | Expression |
|---|---|
| 8lt9 | ⊢ 8 < 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 9075 | . . 3 ⊢ 8 ∈ ℝ | |
| 2 | 1 | ltp1i 8932 | . 2 ⊢ 8 < (8 + 1) |
| 3 | df-9 9056 | . 2 ⊢ 9 = (8 + 1) | |
| 4 | 2, 3 | breqtrri 4060 | 1 ⊢ 8 < 9 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4033 (class class class)co 5922 1c1 7880 + caddc 7882 < clt 8061 8c8 9047 9c9 9048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 |
| This theorem is referenced by: 7lt9 9189 8lt10 9588 slotstnscsi 12872 |
| Copyright terms: Public domain | W3C validator |