ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsubsub4 GIF version

Theorem ablsubsub4 13449
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
ablsubsub.g (𝜑𝐺 ∈ Abel)
ablsubsub.x (𝜑𝑋𝐵)
ablsubsub.y (𝜑𝑌𝐵)
ablsubsub.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablsubsub4 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))

Proof of Theorem ablsubsub4
StepHypRef Expression
1 ablsubsub.g . . . . 5 (𝜑𝐺 ∈ Abel)
2 ablgrp 13419 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 14 . . . 4 (𝜑𝐺 ∈ Grp)
4 ablsubsub.x . . . 4 (𝜑𝑋𝐵)
5 ablsubsub.y . . . 4 (𝜑𝑌𝐵)
6 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
7 ablsubadd.m . . . . 5 = (-g𝐺)
86, 7grpsubcl 13212 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 4, 5, 8syl3anc 1249 . . 3 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
10 ablsubsub.z . . 3 (𝜑𝑍𝐵)
11 ablsubadd.p . . . 4 + = (+g𝐺)
12 eqid 2196 . . . 4 (invg𝐺) = (invg𝐺)
136, 11, 12, 7grpsubval 13178 . . 3 (((𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑌) + ((invg𝐺)‘𝑍)))
149, 10, 13syl2anc 411 . 2 (𝜑 → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑌) + ((invg𝐺)‘𝑍)))
156, 12grpinvcl 13180 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
163, 10, 15syl2anc 411 . . 3 (𝜑 → ((invg𝐺)‘𝑍) ∈ 𝐵)
176, 11, 7, 1, 4, 5, 16ablsubsub 13448 . 2 (𝜑 → (𝑋 (𝑌 ((invg𝐺)‘𝑍))) = ((𝑋 𝑌) + ((invg𝐺)‘𝑍)))
186, 11, 7, 12, 3, 5, 10grpsubinv 13205 . . 3 (𝜑 → (𝑌 ((invg𝐺)‘𝑍)) = (𝑌 + 𝑍))
1918oveq2d 5938 . 2 (𝜑 → (𝑋 (𝑌 ((invg𝐺)‘𝑍))) = (𝑋 (𝑌 + 𝑍)))
2014, 17, 193eqtr2d 2235 1 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Grpcgrp 13132  invgcminusg 13133  -gcsg 13134  Abelcabl 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-cmn 13416  df-abl 13417
This theorem is referenced by:  ablsub32  13452  ablnnncan  13453
  Copyright terms: Public domain W3C validator