![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ablsubsub4 | GIF version |
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.) |
Ref | Expression |
---|---|
ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablsubadd.p | ⊢ + = (+g‘𝐺) |
ablsubadd.m | ⊢ − = (-g‘𝐺) |
ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablsubsub4 | ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsubsub.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablgrp 13362 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | ablsubsub.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | ablsubsub.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | ablsubadd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
7 | ablsubadd.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
8 | 6, 7 | grpsubcl 13155 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
9 | 3, 4, 5, 8 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝐵) |
10 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
12 | eqid 2193 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
13 | 6, 11, 12, 7 | grpsubval 13121 | . . 3 ⊢ (((𝑋 − 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
14 | 9, 10, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
15 | 6, 12 | grpinvcl 13123 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
16 | 3, 10, 15 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
17 | 6, 11, 7, 1, 4, 5, 16 | ablsubsub 13391 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌 − ((invg‘𝐺)‘𝑍))) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
18 | 6, 11, 7, 12, 3, 5, 10 | grpsubinv 13148 | . . 3 ⊢ (𝜑 → (𝑌 − ((invg‘𝐺)‘𝑍)) = (𝑌 + 𝑍)) |
19 | 18 | oveq2d 5935 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌 − ((invg‘𝐺)‘𝑍))) = (𝑋 − (𝑌 + 𝑍))) |
20 | 14, 17, 19 | 3eqtr2d 2232 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 Grpcgrp 13075 invgcminusg 13076 -gcsg 13077 Abelcabl 13358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-inn 8985 df-2 9043 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-sbg 13080 df-cmn 13359 df-abl 13360 |
This theorem is referenced by: ablsub32 13395 ablnnncan 13396 |
Copyright terms: Public domain | W3C validator |