ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablnnncan1 GIF version

Theorem ablnnncan1 13745
Description: Cancellation law for group subtraction. (nnncan1 8338 analog.) (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
ablsub32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablnnncan1 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))

Proof of Theorem ablnnncan1
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 ablnncan.m . . 3 = (-g𝐺)
3 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
4 ablnncan.x . . 3 (𝜑𝑋𝐵)
5 ablnncan.y . . 3 (𝜑𝑌𝐵)
6 ablgrp 13710 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
73, 6syl 14 . . . 4 (𝜑𝐺 ∈ Grp)
8 ablsub32.z . . . 4 (𝜑𝑍𝐵)
91, 2grpsubcl 13497 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
107, 4, 8, 9syl3anc 1250 . . 3 (𝜑 → (𝑋 𝑍) ∈ 𝐵)
111, 2, 3, 4, 5, 10ablsub32 13743 . 2 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = ((𝑋 (𝑋 𝑍)) 𝑌))
121, 2, 3, 4, 8ablnncan 13742 . . 3 (𝜑 → (𝑋 (𝑋 𝑍)) = 𝑍)
1312oveq1d 5977 . 2 (𝜑 → ((𝑋 (𝑋 𝑍)) 𝑌) = (𝑍 𝑌))
1411, 13eqtrd 2239 1 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  cfv 5285  (class class class)co 5962  Basecbs 12917  Grpcgrp 13417  -gcsg 13419  Abelcabl 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-inn 9067  df-2 9125  df-ndx 12920  df-slot 12921  df-base 12923  df-plusg 13007  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421  df-sbg 13422  df-cmn 13707  df-abl 13708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator