ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablnnncan1 GIF version

Theorem ablnnncan1 13856
Description: Cancellation law for group subtraction. (nnncan1 8378 analog.) (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
ablsub32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablnnncan1 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))

Proof of Theorem ablnnncan1
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 ablnncan.m . . 3 = (-g𝐺)
3 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
4 ablnncan.x . . 3 (𝜑𝑋𝐵)
5 ablnncan.y . . 3 (𝜑𝑌𝐵)
6 ablgrp 13821 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
73, 6syl 14 . . . 4 (𝜑𝐺 ∈ Grp)
8 ablsub32.z . . . 4 (𝜑𝑍𝐵)
91, 2grpsubcl 13608 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
107, 4, 8, 9syl3anc 1271 . . 3 (𝜑 → (𝑋 𝑍) ∈ 𝐵)
111, 2, 3, 4, 5, 10ablsub32 13854 . 2 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = ((𝑋 (𝑋 𝑍)) 𝑌))
121, 2, 3, 4, 8ablnncan 13853 . . 3 (𝜑 → (𝑋 (𝑋 𝑍)) = 𝑍)
1312oveq1d 6015 . 2 (𝜑 → ((𝑋 (𝑋 𝑍)) 𝑌) = (𝑍 𝑌))
1411, 13eqtrd 2262 1 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  Grpcgrp 13528  -gcsg 13530  Abelcabl 13817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-sbg 13533  df-cmn 13818  df-abl 13819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator