![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ablnnncan | GIF version |
Description: Cancellation law for group subtraction. (nnncan 8223 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.) |
Ref | Expression |
---|---|
ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
ablnncan.m | ⊢ − = (-g‘𝐺) |
ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsub32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablnnncan | ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablnncan.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2189 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
4 | ablnncan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
5 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | ablgrp 13245 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
7 | 4, 6 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
8 | ablnncan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | ablsub32.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | 1, 3 | grpsubcl 13039 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) |
11 | 7, 8, 9, 10 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) ∈ 𝐵) |
12 | 1, 2, 3, 4, 5, 11, 9 | ablsubsub4 13275 | . 2 ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − ((𝑌 − 𝑍)(+g‘𝐺)𝑍))) |
13 | 1, 2 | ablcom 13259 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑌 − 𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)(𝑌 − 𝑍))) |
14 | 4, 11, 9, 13 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)(𝑌 − 𝑍))) |
15 | 1, 2, 3 | ablpncan3 13273 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑍(+g‘𝐺)(𝑌 − 𝑍)) = 𝑌) |
16 | 4, 9, 8, 15 | syl12anc 1247 | . . . 4 ⊢ (𝜑 → (𝑍(+g‘𝐺)(𝑌 − 𝑍)) = 𝑌) |
17 | 14, 16 | eqtrd 2222 | . . 3 ⊢ (𝜑 → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = 𝑌) |
18 | 17 | oveq2d 5913 | . 2 ⊢ (𝜑 → (𝑋 − ((𝑌 − 𝑍)(+g‘𝐺)𝑍)) = (𝑋 − 𝑌)) |
19 | 12, 18 | eqtrd 2222 | 1 ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 +gcplusg 12592 Grpcgrp 12960 -gcsg 12962 Abelcabl 13241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1re 7936 ax-addrcl 7939 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-inn 8951 df-2 9009 df-ndx 12518 df-slot 12519 df-base 12521 df-plusg 12605 df-0g 12766 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 df-sbg 12965 df-cmn 13242 df-abl 13243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |