ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablinvadd GIF version

Theorem ablinvadd 13440
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablinvadd.b 𝐵 = (Base‘𝐺)
ablinvadd.p + = (+g𝐺)
ablinvadd.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
ablinvadd ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑋) + (𝑁𝑌)))

Proof of Theorem ablinvadd
StepHypRef Expression
1 ablgrp 13419 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2 ablinvadd.b . . . 4 𝐵 = (Base‘𝐺)
3 ablinvadd.p . . . 4 + = (+g𝐺)
4 ablinvadd.n . . . 4 𝑁 = (invg𝐺)
52, 3, 4grpinvadd 13210 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
61, 5syl3an1 1282 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
7 simp1 999 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Abel)
813ad2ant1 1020 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
9 simp2 1000 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
102, 4grpinvcl 13180 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
118, 9, 10syl2anc 411 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑋) ∈ 𝐵)
12 simp3 1001 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
132, 4grpinvcl 13180 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
148, 12, 13syl2anc 411 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
152, 3ablcom 13433 . . 3 ((𝐺 ∈ Abel ∧ (𝑁𝑋) ∈ 𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → ((𝑁𝑋) + (𝑁𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
167, 11, 14, 15syl3anc 1249 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) + (𝑁𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
176, 16eqtr4d 2232 1 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑋) + (𝑁𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Grpcgrp 13132  invgcminusg 13133  Abelcabl 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417
This theorem is referenced by:  ablsub4  13443  invghm  13459  lmodnegadd  13892
  Copyright terms: Public domain W3C validator