ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablnncan GIF version

Theorem ablnncan 13129
Description: Cancellation law for group subtraction. (nncan 8188 analog.) (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ablnncan (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)

Proof of Theorem ablnncan
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2177 . . 3 (+g𝐺) = (+g𝐺)
3 ablnncan.m . . 3 = (-g𝐺)
4 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablnncan.x . . 3 (𝜑𝑋𝐵)
6 ablnncan.y . . 3 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 5, 6ablsubsub 13126 . 2 (𝜑 → (𝑋 (𝑋 𝑌)) = ((𝑋 𝑋)(+g𝐺)𝑌))
8 ablgrp 13098 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
94, 8syl 14 . . . 4 (𝜑𝐺 ∈ Grp)
10 eqid 2177 . . . . 5 (0g𝐺) = (0g𝐺)
111, 10, 3grpsubid 12959 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
129, 5, 11syl2anc 411 . . 3 (𝜑 → (𝑋 𝑋) = (0g𝐺))
1312oveq1d 5892 . 2 (𝜑 → ((𝑋 𝑋)(+g𝐺)𝑌) = ((0g𝐺)(+g𝐺)𝑌))
141, 2, 10grplid 12911 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺)(+g𝐺)𝑌) = 𝑌)
159, 6, 14syl2anc 411 . 2 (𝜑 → ((0g𝐺)(+g𝐺)𝑌) = 𝑌)
167, 13, 153eqtrd 2214 1 (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  0gc0g 12710  Grpcgrp 12882  -gcsg 12884  Abelcabl 13094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887  df-cmn 13095  df-abl 13096
This theorem is referenced by:  ablnnncan1  13132
  Copyright terms: Public domain W3C validator