| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablsub2inv | GIF version | ||
| Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.) |
| Ref | Expression |
|---|---|
| ablsub2inv.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablsub2inv.m | ⊢ − = (-g‘𝐺) |
| ablsub2inv.n | ⊢ 𝑁 = (invg‘𝐺) |
| ablsub2inv.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablsub2inv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablsub2inv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ablsub2inv | ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsub2inv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2229 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | ablsub2inv.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 4 | ablsub2inv.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | ablsub2inv.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 6 | ablgrp 13812 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 8 | ablsub2inv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 1, 4 | grpinvcl 13567 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 10 | 7, 8, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| 11 | ablsub2inv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | 1, 2, 3, 4, 7, 10, 11 | grpsubinv 13592 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = ((𝑁‘𝑋)(+g‘𝐺)𝑌)) |
| 13 | 1, 2 | ablcom 13826 | . . . . . 6 ⊢ ((𝐺 ∈ Abel ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
| 14 | 5, 10, 11, 13 | syl3anc 1271 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
| 15 | 1, 4 | grpinvinv 13586 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 16 | 7, 11, 15 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 17 | 16 | oveq1d 6009 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋)) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
| 18 | 14, 17 | eqtr4d 2265 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
| 19 | 1, 4 | grpinvcl 13567 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
| 20 | 7, 11, 19 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 21 | 1, 2, 4 | grpinvadd 13597 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌))) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
| 22 | 7, 8, 20, 21 | syl3anc 1271 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌))) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
| 23 | 18, 22 | eqtr4d 2265 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌)))) |
| 24 | 1, 2, 4, 3 | grpsubval 13565 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)(𝑁‘𝑌))) |
| 25 | 8, 11, 24 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)(𝑁‘𝑌))) |
| 26 | 25 | fveq2d 5627 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑋 − 𝑌)) = (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌)))) |
| 27 | 23, 26 | eqtr4d 2265 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑁‘(𝑋 − 𝑌))) |
| 28 | 1, 3, 4 | grpinvsub 13601 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
| 29 | 7, 8, 11, 28 | syl3anc 1271 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
| 30 | 12, 27, 29 | 3eqtrd 2266 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 Grpcgrp 13519 invgcminusg 13520 -gcsg 13521 Abelcabl 13808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-inn 9099 df-2 9157 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 df-sbg 13524 df-cmn 13809 df-abl 13810 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |