ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsub2inv GIF version

Theorem ablsub2inv 13381
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
Hypotheses
Ref Expression
ablsub2inv.b 𝐵 = (Base‘𝐺)
ablsub2inv.m = (-g𝐺)
ablsub2inv.n 𝑁 = (invg𝐺)
ablsub2inv.g (𝜑𝐺 ∈ Abel)
ablsub2inv.x (𝜑𝑋𝐵)
ablsub2inv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ablsub2inv (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))

Proof of Theorem ablsub2inv
StepHypRef Expression
1 ablsub2inv.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2193 . . 3 (+g𝐺) = (+g𝐺)
3 ablsub2inv.m . . 3 = (-g𝐺)
4 ablsub2inv.n . . 3 𝑁 = (invg𝐺)
5 ablsub2inv.g . . . 4 (𝜑𝐺 ∈ Abel)
6 ablgrp 13359 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
75, 6syl 14 . . 3 (𝜑𝐺 ∈ Grp)
8 ablsub2inv.x . . . 4 (𝜑𝑋𝐵)
91, 4grpinvcl 13120 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
107, 8, 9syl2anc 411 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
11 ablsub2inv.y . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 7, 10, 11grpsubinv 13145 . 2 (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = ((𝑁𝑋)(+g𝐺)𝑌))
131, 2ablcom 13373 . . . . . 6 ((𝐺 ∈ Abel ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵) → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑌(+g𝐺)(𝑁𝑋)))
145, 10, 11, 13syl3anc 1249 . . . . 5 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑌(+g𝐺)(𝑁𝑋)))
151, 4grpinvinv 13139 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
167, 11, 15syl2anc 411 . . . . . 6 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1716oveq1d 5933 . . . . 5 (𝜑 → ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)) = (𝑌(+g𝐺)(𝑁𝑋)))
1814, 17eqtr4d 2229 . . . 4 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
191, 4grpinvcl 13120 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
207, 11, 19syl2anc 411 . . . . 5 (𝜑 → (𝑁𝑌) ∈ 𝐵)
211, 2, 4grpinvadd 13150 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
227, 8, 20, 21syl3anc 1249 . . . 4 (𝜑 → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
2318, 22eqtr4d 2229 . . 3 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
241, 2, 4, 3grpsubval 13118 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
258, 11, 24syl2anc 411 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
2625fveq2d 5558 . . 3 (𝜑 → (𝑁‘(𝑋 𝑌)) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
2723, 26eqtr4d 2229 . 2 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑁‘(𝑋 𝑌)))
281, 3, 4grpinvsub 13154 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
297, 8, 11, 28syl3anc 1249 . 2 (𝜑 → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
3012, 27, 293eqtrd 2230 1 (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Grpcgrp 13072  invgcminusg 13073  -gcsg 13074  Abelcabl 13355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-cmn 13356  df-abl 13357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator