ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablpncan3 GIF version

Theorem ablpncan3 13387
Description: A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablpncan3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + (𝑌 𝑋)) = 𝑌)

Proof of Theorem ablpncan3
StepHypRef Expression
1 simpl 109 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
2 simprl 529 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3 ablgrp 13359 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
43adantr 276 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
5 simprr 531 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
6 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
7 ablsubadd.m . . . . 5 = (-g𝐺)
86, 7grpsubcl 13152 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) ∈ 𝐵)
94, 5, 2, 8syl3anc 1249 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → (𝑌 𝑋) ∈ 𝐵)
10 ablsubadd.p . . . 4 + = (+g𝐺)
116, 10ablcom 13373 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵 ∧ (𝑌 𝑋) ∈ 𝐵) → (𝑋 + (𝑌 𝑋)) = ((𝑌 𝑋) + 𝑋))
121, 2, 9, 11syl3anc 1249 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + (𝑌 𝑋)) = ((𝑌 𝑋) + 𝑋))
136, 10, 7grpnpcan 13164 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → ((𝑌 𝑋) + 𝑋) = 𝑌)
144, 5, 2, 13syl3anc 1249 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → ((𝑌 𝑋) + 𝑋) = 𝑌)
1512, 14eqtrd 2226 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + (𝑌 𝑋)) = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Grpcgrp 13072  -gcsg 13074  Abelcabl 13355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-cmn 13356  df-abl 13357
This theorem is referenced by:  ablnnncan  13393
  Copyright terms: Public domain W3C validator