ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsubsub GIF version

Theorem ablsubsub 12917
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
ablsubsub.g (𝜑𝐺 ∈ Abel)
ablsubsub.x (𝜑𝑋𝐵)
ablsubsub.y (𝜑𝑌𝐵)
ablsubsub.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablsubsub (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))

Proof of Theorem ablsubsub
StepHypRef Expression
1 ablsubsub.g . . . 4 (𝜑𝐺 ∈ Abel)
2 ablgrp 12889 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 14 . . 3 (𝜑𝐺 ∈ Grp)
4 ablsubsub.x . . 3 (𝜑𝑋𝐵)
5 ablsubsub.y . . 3 (𝜑𝑌𝐵)
6 ablsubsub.z . . 3 (𝜑𝑍𝐵)
7 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
8 ablsubadd.p . . . 4 + = (+g𝐺)
9 ablsubadd.m . . . 4 = (-g𝐺)
107, 8, 9grpsubsub 12818 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
113, 4, 5, 6, 10syl13anc 1240 . 2 (𝜑 → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
127, 8, 9grpaddsubass 12819 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
133, 4, 6, 5, 12syl13anc 1240 . 2 (𝜑 → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
147, 8, 9abladdsub 12914 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
151, 4, 6, 5, 14syl13anc 1240 . 2 (𝜑 → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
1611, 13, 153eqtr2d 2214 1 (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2146  cfv 5208  (class class class)co 5865  Basecbs 12428  +gcplusg 12492  Grpcgrp 12738  -gcsg 12740  Abelcabl 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-inn 8891  df-2 8949  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-grp 12741  df-minusg 12742  df-sbg 12743  df-cmn 12886  df-abl 12887
This theorem is referenced by:  ablsubsub4  12918  ablnncan  12920
  Copyright terms: Public domain W3C validator