Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ablsubsub23 | GIF version |
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
ablsubsub23.v | ⊢ 𝑉 = (Base‘𝐺) |
ablsubsub23.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
ablsubsub23 | ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐺 ∈ Abel) | |
2 | simpr3 1005 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
3 | simpr2 1004 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
4 | ablsubsub23.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐺) | |
5 | eqid 2175 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | 4, 5 | ablcom 12902 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐶(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)𝐶)) |
7 | 1, 2, 3, 6 | syl3anc 1238 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐶(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)𝐶)) |
8 | 7 | eqeq1d 2184 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐶(+g‘𝐺)𝐵) = 𝐴 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) |
9 | ablgrp 12889 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
10 | ablsubsub23.m | . . . 4 ⊢ − = (-g‘𝐺) | |
11 | 4, 5, 10 | grpsubadd 12817 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶(+g‘𝐺)𝐵) = 𝐴)) |
12 | 9, 11 | sylan 283 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶(+g‘𝐺)𝐵) = 𝐴)) |
13 | 3ancomb 986 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
14 | 13 | biimpi 120 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
15 | 4, 5, 10 | grpsubadd 12817 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ((𝐴 − 𝐶) = 𝐵 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) |
16 | 9, 14, 15 | syl2an 289 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐶) = 𝐵 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) |
17 | 8, 12, 16 | 3bitr4d 220 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 Basecbs 12428 +gcplusg 12492 Grpcgrp 12738 -gcsg 12740 Abelcabl 12885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-inn 8891 df-2 8949 df-ndx 12431 df-slot 12432 df-base 12434 df-plusg 12505 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-grp 12741 df-minusg 12742 df-sbg 12743 df-cmn 12886 df-abl 12887 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |