| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ablsubsub23 | GIF version | ||
| Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| ablsubsub23.v | ⊢ 𝑉 = (Base‘𝐺) | 
| ablsubsub23.m | ⊢ − = (-g‘𝐺) | 
| Ref | Expression | 
|---|---|
| ablsubsub23 | ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐺 ∈ Abel) | |
| 2 | simpr3 1007 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 3 | simpr2 1006 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
| 4 | ablsubsub23.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐺) | |
| 5 | eqid 2196 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 4, 5 | ablcom 13433 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐶(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)𝐶)) | 
| 7 | 1, 2, 3, 6 | syl3anc 1249 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐶(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)𝐶)) | 
| 8 | 7 | eqeq1d 2205 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐶(+g‘𝐺)𝐵) = 𝐴 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) | 
| 9 | ablgrp 13419 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 10 | ablsubsub23.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 11 | 4, 5, 10 | grpsubadd 13220 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶(+g‘𝐺)𝐵) = 𝐴)) | 
| 12 | 9, 11 | sylan 283 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶(+g‘𝐺)𝐵) = 𝐴)) | 
| 13 | 3ancomb 988 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
| 14 | 13 | biimpi 120 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | 
| 15 | 4, 5, 10 | grpsubadd 13220 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ((𝐴 − 𝐶) = 𝐵 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) | 
| 16 | 9, 14, 15 | syl2an 289 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐶) = 𝐵 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) | 
| 17 | 8, 12, 16 | 3bitr4d 220 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 Grpcgrp 13132 -gcsg 13134 Abelcabl 13415 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-cmn 13416 df-abl 13417 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |