![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ablsubsub23 | GIF version |
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
ablsubsub23.v | ⊢ 𝑉 = (Base‘𝐺) |
ablsubsub23.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
ablsubsub23 | ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐺 ∈ Abel) | |
2 | simpr3 1005 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
3 | simpr2 1004 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
4 | ablsubsub23.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐺) | |
5 | eqid 2177 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | 4, 5 | ablcom 13037 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐶(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)𝐶)) |
7 | 1, 2, 3, 6 | syl3anc 1238 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐶(+g‘𝐺)𝐵) = (𝐵(+g‘𝐺)𝐶)) |
8 | 7 | eqeq1d 2186 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐶(+g‘𝐺)𝐵) = 𝐴 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) |
9 | ablgrp 13024 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
10 | ablsubsub23.m | . . . 4 ⊢ − = (-g‘𝐺) | |
11 | 4, 5, 10 | grpsubadd 12890 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶(+g‘𝐺)𝐵) = 𝐴)) |
12 | 9, 11 | sylan 283 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶(+g‘𝐺)𝐵) = 𝐴)) |
13 | 3ancomb 986 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
14 | 13 | biimpi 120 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
15 | 4, 5, 10 | grpsubadd 12890 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ((𝐴 − 𝐶) = 𝐵 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) |
16 | 9, 14, 15 | syl2an 289 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐶) = 𝐵 ↔ (𝐵(+g‘𝐺)𝐶) = 𝐴)) |
17 | 8, 12, 16 | 3bitr4d 220 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ‘cfv 5215 (class class class)co 5872 Basecbs 12454 +gcplusg 12528 Grpcgrp 12809 -gcsg 12811 Abelcabl 13020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-cnex 7899 ax-resscn 7900 ax-1re 7902 ax-addrcl 7905 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-f1 5220 df-fo 5221 df-f1o 5222 df-fv 5223 df-riota 5828 df-ov 5875 df-oprab 5876 df-mpo 5877 df-1st 6138 df-2nd 6139 df-inn 8916 df-2 8974 df-ndx 12457 df-slot 12458 df-base 12460 df-plusg 12541 df-0g 12695 df-mgm 12707 df-sgrp 12740 df-mnd 12750 df-grp 12812 df-minusg 12813 df-sbg 12814 df-cmn 13021 df-abl 13022 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |