ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsubsub23 GIF version

Theorem ablsubsub23 13231
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
ablsubsub23.v 𝑉 = (Base‘𝐺)
ablsubsub23.m = (-g𝐺)
Assertion
Ref Expression
ablsubsub23 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))

Proof of Theorem ablsubsub23
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐺 ∈ Abel)
2 simpr3 1007 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
3 simpr2 1006 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
4 ablsubsub23.v . . . . 5 𝑉 = (Base‘𝐺)
5 eqid 2189 . . . . 5 (+g𝐺) = (+g𝐺)
64, 5ablcom 13209 . . . 4 ((𝐺 ∈ Abel ∧ 𝐶𝑉𝐵𝑉) → (𝐶(+g𝐺)𝐵) = (𝐵(+g𝐺)𝐶))
71, 2, 3, 6syl3anc 1249 . . 3 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐶(+g𝐺)𝐵) = (𝐵(+g𝐺)𝐶))
87eqeq1d 2198 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐶(+g𝐺)𝐵) = 𝐴 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
9 ablgrp 13195 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
10 ablsubsub23.m . . . 4 = (-g𝐺)
114, 5, 10grpsubadd 13004 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐶(+g𝐺)𝐵) = 𝐴))
129, 11sylan 283 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐶(+g𝐺)𝐵) = 𝐴))
13 3ancomb 988 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ (𝐴𝑉𝐶𝑉𝐵𝑉))
1413biimpi 120 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐶𝑉𝐵𝑉))
154, 5, 10grpsubadd 13004 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑉𝐶𝑉𝐵𝑉)) → ((𝐴 𝐶) = 𝐵 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
169, 14, 15syl2an 289 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐶) = 𝐵 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
178, 12, 163bitr4d 220 1 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  cfv 5231  (class class class)co 5891  Basecbs 12486  +gcplusg 12561  Grpcgrp 12917  -gcsg 12919  Abelcabl 13191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7921  ax-resscn 7922  ax-1re 7924  ax-addrcl 7927
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-inn 8939  df-2 8997  df-ndx 12489  df-slot 12490  df-base 12492  df-plusg 12574  df-0g 12735  df-mgm 12804  df-sgrp 12837  df-mnd 12850  df-grp 12920  df-minusg 12921  df-sbg 12922  df-cmn 13192  df-abl 13193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator