Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  max0addsup GIF version

 Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
Assertion
Ref Expression
max0addsup (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))

Proof of Theorem max0addsup
StepHypRef Expression
1 0re 7549 . . . . . 6 0 ∈ ℝ
2 maxabs 10703 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → sup({𝐴, 0}, ℝ, < ) = (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2))
31, 2mpan2 417 . . . . 5 (𝐴 ∈ ℝ → sup({𝐴, 0}, ℝ, < ) = (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2))
4 recn 7536 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
54addid1d 7692 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
64subid1d 7843 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴)
76fveq2d 5322 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(𝐴 − 0)) = (abs‘𝐴))
85, 7oveq12d 5684 . . . . . 6 (𝐴 ∈ ℝ → ((𝐴 + 0) + (abs‘(𝐴 − 0))) = (𝐴 + (abs‘𝐴)))
98oveq1d 5681 . . . . 5 (𝐴 ∈ ℝ → (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2) = ((𝐴 + (abs‘𝐴)) / 2))
103, 9eqtrd 2121 . . . 4 (𝐴 ∈ ℝ → sup({𝐴, 0}, ℝ, < ) = ((𝐴 + (abs‘𝐴)) / 2))
11 renegcl 7804 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
12 maxabs 10703 . . . . . 6 ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → sup({-𝐴, 0}, ℝ, < ) = (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2))
1311, 1, 12sylancl 405 . . . . 5 (𝐴 ∈ ℝ → sup({-𝐴, 0}, ℝ, < ) = (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2))
1411recnd 7577 . . . . . . . 8 (𝐴 ∈ ℝ → -𝐴 ∈ ℂ)
1514addid1d 7692 . . . . . . 7 (𝐴 ∈ ℝ → (-𝐴 + 0) = -𝐴)
1614subid1d 7843 . . . . . . . . 9 (𝐴 ∈ ℝ → (-𝐴 − 0) = -𝐴)
1716fveq2d 5322 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘(-𝐴 − 0)) = (abs‘-𝐴))
184absnegd 10683 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘-𝐴) = (abs‘𝐴))
1917, 18eqtrd 2121 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(-𝐴 − 0)) = (abs‘𝐴))
2015, 19oveq12d 5684 . . . . . 6 (𝐴 ∈ ℝ → ((-𝐴 + 0) + (abs‘(-𝐴 − 0))) = (-𝐴 + (abs‘𝐴)))
2120oveq1d 5681 . . . . 5 (𝐴 ∈ ℝ → (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2) = ((-𝐴 + (abs‘𝐴)) / 2))
2213, 21eqtrd 2121 . . . 4 (𝐴 ∈ ℝ → sup({-𝐴, 0}, ℝ, < ) = ((-𝐴 + (abs‘𝐴)) / 2))
2310, 22oveq12d 5684 . . 3 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (((𝐴 + (abs‘𝐴)) / 2) + ((-𝐴 + (abs‘𝐴)) / 2)))
244abscld 10675 . . . . . 6 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
2524recnd 7577 . . . . 5 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℂ)
264, 25addcld 7568 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (abs‘𝐴)) ∈ ℂ)
2714, 25addcld 7568 . . . 4 (𝐴 ∈ ℝ → (-𝐴 + (abs‘𝐴)) ∈ ℂ)
28 2cnd 8556 . . . 4 (𝐴 ∈ ℝ → 2 ∈ ℂ)
29 2ap0 8576 . . . . 5 2 # 0
3029a1i 9 . . . 4 (𝐴 ∈ ℝ → 2 # 0)
3126, 27, 28, 30divdirapd 8357 . . 3 (𝐴 ∈ ℝ → (((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) / 2) = (((𝐴 + (abs‘𝐴)) / 2) + ((-𝐴 + (abs‘𝐴)) / 2)))
324, 25, 14, 25add4d 7712 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) = ((𝐴 + -𝐴) + ((abs‘𝐴) + (abs‘𝐴))))
334negidd 7844 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0)
3433oveq1d 5681 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 + -𝐴) + ((abs‘𝐴) + (abs‘𝐴))) = (0 + ((abs‘𝐴) + (abs‘𝐴))))
3525, 25addcld 7568 . . . . . 6 (𝐴 ∈ ℝ → ((abs‘𝐴) + (abs‘𝐴)) ∈ ℂ)
3635addid2d 7693 . . . . 5 (𝐴 ∈ ℝ → (0 + ((abs‘𝐴) + (abs‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
3732, 34, 363eqtrd 2125 . . . 4 (𝐴 ∈ ℝ → ((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
3837oveq1d 5681 . . 3 (𝐴 ∈ ℝ → (((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) / 2) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
3923, 31, 383eqtr2d 2127 . 2 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
40252timesd 8719 . . 3 (𝐴 ∈ ℝ → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
4140oveq1d 5681 . 2 (𝐴 ∈ ℝ → ((2 · (abs‘𝐴)) / 2) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
4225, 28, 30divcanap3d 8323 . 2 (𝐴 ∈ ℝ → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
4339, 41, 423eqtr2d 2127 1 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1290   ∈ wcel 1439  {cpr 3451   class class class wbr 3851  ‘cfv 5028  (class class class)co 5666  supcsup 6731  ℝcr 7410  0cc0 7411   + caddc 7414   · cmul 7416   < clt 7583   − cmin 7714  -cneg 7715   # cap 8119   / cdiv 8200  2c2 8534  abscabs 10491 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526 This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-sup 6733  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-rp 9196  df-iseq 9914  df-seq3 9915  df-exp 10016  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator