ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  max0addsup GIF version

Theorem max0addsup 11241
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
Assertion
Ref Expression
max0addsup (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))

Proof of Theorem max0addsup
StepHypRef Expression
1 0re 7970 . . . . . 6 0 ∈ ℝ
2 maxabs 11231 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → sup({𝐴, 0}, ℝ, < ) = (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2))
31, 2mpan2 425 . . . . 5 (𝐴 ∈ ℝ → sup({𝐴, 0}, ℝ, < ) = (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2))
4 recn 7957 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
54addid1d 8119 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
64subid1d 8270 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴)
76fveq2d 5531 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(𝐴 − 0)) = (abs‘𝐴))
85, 7oveq12d 5906 . . . . . 6 (𝐴 ∈ ℝ → ((𝐴 + 0) + (abs‘(𝐴 − 0))) = (𝐴 + (abs‘𝐴)))
98oveq1d 5903 . . . . 5 (𝐴 ∈ ℝ → (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2) = ((𝐴 + (abs‘𝐴)) / 2))
103, 9eqtrd 2220 . . . 4 (𝐴 ∈ ℝ → sup({𝐴, 0}, ℝ, < ) = ((𝐴 + (abs‘𝐴)) / 2))
11 renegcl 8231 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
12 maxabs 11231 . . . . . 6 ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → sup({-𝐴, 0}, ℝ, < ) = (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2))
1311, 1, 12sylancl 413 . . . . 5 (𝐴 ∈ ℝ → sup({-𝐴, 0}, ℝ, < ) = (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2))
1411recnd 7999 . . . . . . . 8 (𝐴 ∈ ℝ → -𝐴 ∈ ℂ)
1514addid1d 8119 . . . . . . 7 (𝐴 ∈ ℝ → (-𝐴 + 0) = -𝐴)
1614subid1d 8270 . . . . . . . . 9 (𝐴 ∈ ℝ → (-𝐴 − 0) = -𝐴)
1716fveq2d 5531 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘(-𝐴 − 0)) = (abs‘-𝐴))
184absnegd 11211 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘-𝐴) = (abs‘𝐴))
1917, 18eqtrd 2220 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(-𝐴 − 0)) = (abs‘𝐴))
2015, 19oveq12d 5906 . . . . . 6 (𝐴 ∈ ℝ → ((-𝐴 + 0) + (abs‘(-𝐴 − 0))) = (-𝐴 + (abs‘𝐴)))
2120oveq1d 5903 . . . . 5 (𝐴 ∈ ℝ → (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2) = ((-𝐴 + (abs‘𝐴)) / 2))
2213, 21eqtrd 2220 . . . 4 (𝐴 ∈ ℝ → sup({-𝐴, 0}, ℝ, < ) = ((-𝐴 + (abs‘𝐴)) / 2))
2310, 22oveq12d 5906 . . 3 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (((𝐴 + (abs‘𝐴)) / 2) + ((-𝐴 + (abs‘𝐴)) / 2)))
244abscld 11203 . . . . . 6 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
2524recnd 7999 . . . . 5 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℂ)
264, 25addcld 7990 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (abs‘𝐴)) ∈ ℂ)
2714, 25addcld 7990 . . . 4 (𝐴 ∈ ℝ → (-𝐴 + (abs‘𝐴)) ∈ ℂ)
28 2cnd 9005 . . . 4 (𝐴 ∈ ℝ → 2 ∈ ℂ)
29 2ap0 9025 . . . . 5 2 # 0
3029a1i 9 . . . 4 (𝐴 ∈ ℝ → 2 # 0)
3126, 27, 28, 30divdirapd 8799 . . 3 (𝐴 ∈ ℝ → (((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) / 2) = (((𝐴 + (abs‘𝐴)) / 2) + ((-𝐴 + (abs‘𝐴)) / 2)))
324, 25, 14, 25add4d 8139 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) = ((𝐴 + -𝐴) + ((abs‘𝐴) + (abs‘𝐴))))
334negidd 8271 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0)
3433oveq1d 5903 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 + -𝐴) + ((abs‘𝐴) + (abs‘𝐴))) = (0 + ((abs‘𝐴) + (abs‘𝐴))))
3525, 25addcld 7990 . . . . . 6 (𝐴 ∈ ℝ → ((abs‘𝐴) + (abs‘𝐴)) ∈ ℂ)
3635addid2d 8120 . . . . 5 (𝐴 ∈ ℝ → (0 + ((abs‘𝐴) + (abs‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
3732, 34, 363eqtrd 2224 . . . 4 (𝐴 ∈ ℝ → ((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
3837oveq1d 5903 . . 3 (𝐴 ∈ ℝ → (((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) / 2) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
3923, 31, 383eqtr2d 2226 . 2 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
40252timesd 9174 . . 3 (𝐴 ∈ ℝ → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
4140oveq1d 5903 . 2 (𝐴 ∈ ℝ → ((2 · (abs‘𝐴)) / 2) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
4225, 28, 30divcanap3d 8765 . 2 (𝐴 ∈ ℝ → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
4339, 41, 423eqtr2d 2226 1 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158  {cpr 3605   class class class wbr 4015  cfv 5228  (class class class)co 5888  supcsup 6994  cr 7823  0cc0 7824   + caddc 7827   · cmul 7829   < clt 8005  cmin 8141  -cneg 8142   # cap 8551   / cdiv 8642  2c2 8983  abscabs 11019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-sup 6996  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-rp 9667  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator