ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  readd GIF version

Theorem readd 10880
Description: Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
readd ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜(๐ด + ๐ต)) = ((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)))

Proof of Theorem readd
StepHypRef Expression
1 recl 10864 . . . . . . 7 (๐ด โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ด) โˆˆ โ„)
21adantr 276 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜๐ด) โˆˆ โ„)
32recnd 7988 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜๐ด) โˆˆ โ„‚)
4 ax-icn 7908 . . . . . 6 i โˆˆ โ„‚
5 imcl 10865 . . . . . . . 8 (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„)
65adantr 276 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„)
76recnd 7988 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„‚)
8 mulcl 7940 . . . . . 6 ((i โˆˆ โ„‚ โˆง (โ„‘โ€˜๐ด) โˆˆ โ„‚) โ†’ (i ยท (โ„‘โ€˜๐ด)) โˆˆ โ„‚)
94, 7, 8sylancr 414 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (i ยท (โ„‘โ€˜๐ด)) โˆˆ โ„‚)
10 recl 10864 . . . . . . 7 (๐ต โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ต) โˆˆ โ„)
1110adantl 277 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜๐ต) โˆˆ โ„)
1211recnd 7988 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜๐ต) โˆˆ โ„‚)
13 imcl 10865 . . . . . . . 8 (๐ต โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ต) โˆˆ โ„)
1413adantl 277 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜๐ต) โˆˆ โ„)
1514recnd 7988 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜๐ต) โˆˆ โ„‚)
16 mulcl 7940 . . . . . 6 ((i โˆˆ โ„‚ โˆง (โ„‘โ€˜๐ต) โˆˆ โ„‚) โ†’ (i ยท (โ„‘โ€˜๐ต)) โˆˆ โ„‚)
174, 15, 16sylancr 414 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (i ยท (โ„‘โ€˜๐ต)) โˆˆ โ„‚)
183, 9, 12, 17add4d 8128 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) + ((โ„œโ€˜๐ต) + (i ยท (โ„‘โ€˜๐ต)))) = (((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + ((i ยท (โ„‘โ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ต)))))
19 replim 10870 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ๐ด = ((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))))
20 replim 10870 . . . . 5 (๐ต โˆˆ โ„‚ โ†’ ๐ต = ((โ„œโ€˜๐ต) + (i ยท (โ„‘โ€˜๐ต))))
2119, 20oveqan12d 5896 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด + ๐ต) = (((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) + ((โ„œโ€˜๐ต) + (i ยท (โ„‘โ€˜๐ต)))))
224a1i 9 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ i โˆˆ โ„‚)
2322, 7, 15adddid 7984 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต))) = ((i ยท (โ„‘โ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ต))))
2423oveq2d 5893 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)))) = (((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + ((i ยท (โ„‘โ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ต)))))
2518, 21, 243eqtr4d 2220 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด + ๐ต) = (((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)))))
2625fveq2d 5521 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜(๐ด + ๐ต)) = (โ„œโ€˜(((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต))))))
27 readdcl 7939 . . . 4 (((โ„œโ€˜๐ด) โˆˆ โ„ โˆง (โ„œโ€˜๐ต) โˆˆ โ„) โ†’ ((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) โˆˆ โ„)
281, 10, 27syl2an 289 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) โˆˆ โ„)
29 readdcl 7939 . . . 4 (((โ„‘โ€˜๐ด) โˆˆ โ„ โˆง (โ„‘โ€˜๐ต) โˆˆ โ„) โ†’ ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)) โˆˆ โ„)
305, 13, 29syl2an 289 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)) โˆˆ โ„)
31 crre 10868 . . 3 ((((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) โˆˆ โ„ โˆง ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)) โˆˆ โ„) โ†’ (โ„œโ€˜(((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต))))) = ((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)))
3228, 30, 31syl2anc 411 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜(((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต))))) = ((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)))
3326, 32eqtrd 2210 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜(๐ด + ๐ต)) = ((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   = wceq 1353   โˆˆ wcel 2148  โ€˜cfv 5218  (class class class)co 5877  โ„‚cc 7811  โ„cr 7812  ici 7815   + caddc 7816   ยท cmul 7818  โ„œcre 10851  โ„‘cim 10852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-2 8980  df-cj 10853  df-re 10854  df-im 10855
This theorem is referenced by:  resub  10881  cjadd  10895  readdi  10939  readdd  10970  fsumre  11482  gzaddcl  12377
  Copyright terms: Public domain W3C validator