ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdtri GIF version

Theorem bdtri 11280
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
bdtri (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))

Proof of Theorem bdtri
StepHypRef Expression
1 simp1l 1023 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
2 simp2l 1025 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
31, 2readdcld 8017 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ)
4 simp3 1001 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
54rpred 9726 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
63, 5readdcld 8017 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ)
71recnd 8016 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
82recnd 8016 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
97, 8addcld 8007 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℂ)
105recnd 8016 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
119, 10subcld 8298 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) − 𝐶) ∈ ℂ)
1211abscld 11222 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℝ)
136, 12resubcld 8368 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ)
141, 5readdcld 8017 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐶) ∈ ℝ)
157, 10subcld 8298 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐶) ∈ ℂ)
1615abscld 11222 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴𝐶)) ∈ ℝ)
1714, 16resubcld 8368 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) ∈ ℝ)
182, 5readdcld 8017 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 + 𝐶) ∈ ℝ)
198, 10subcld 8298 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵𝐶) ∈ ℂ)
2019abscld 11222 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐵𝐶)) ∈ ℝ)
2118, 20resubcld 8368 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) ∈ ℝ)
2217, 21readdcld 8017 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) ∈ ℝ)
23 2rp 9688 . . . 4 2 ∈ ℝ+
2423a1i 9 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈ ℝ+)
2512renegcld 8367 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → -(abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℝ)
2616, 20readdcld 8017 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
275, 26resubcld 8368 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) ∈ ℝ)
2816recnd 8016 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴𝐶)) ∈ ℂ)
2920recnd 8016 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐵𝐶)) ∈ ℂ)
3028, 29addcld 8007 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℂ)
3112recnd 8016 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℂ)
3230, 31, 30sub32d 8330 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) − (abs‘((𝐴 + 𝐵) − 𝐶))))
3330subidd 8286 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = 0)
3433oveq1d 5911 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) − (abs‘((𝐴 + 𝐵) − 𝐶))) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶))))
3532, 34eqtrd 2222 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶))))
36 df-neg 8161 . . . . . . 7 -(abs‘((𝐴 + 𝐵) − 𝐶)) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶)))
3735, 36eqtr4di 2240 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = -(abs‘((𝐴 + 𝐵) − 𝐶)))
3826, 12resubcld 8368 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ)
39 bdtrilem 11279 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))
4026, 12, 5lesubaddd 8529 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ 𝐶 ↔ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))))
4139, 40mpbird 167 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ 𝐶)
4238, 5, 26, 41lesub1dd 8548 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) ≤ (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
4337, 42eqbrtrrd 4042 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → -(abs‘((𝐴 + 𝐵) − 𝐶)) ≤ (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
4425, 27, 6, 43leadd2dd 8547 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + -(abs‘((𝐴 + 𝐵) − 𝐶))) ≤ (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))))
459, 10addcld 8007 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + 𝐶) ∈ ℂ)
4645, 31negsubd 8304 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + -(abs‘((𝐴 + 𝐵) − 𝐶))) = (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))))
479, 10, 10addassd 8010 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + 𝐶) = ((𝐴 + 𝐵) + (𝐶 + 𝐶)))
487, 8, 10, 10add4d 8156 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + (𝐶 + 𝐶)) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
4947, 48eqtrd 2222 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + 𝐶) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
5049oveq1d 5911 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) + 𝐶) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐶) + (𝐵 + 𝐶)) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
5145, 10, 30addsubassd 8318 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) + 𝐶) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))))
527, 10addcld 8007 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐶) ∈ ℂ)
538, 10addcld 8007 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 + 𝐶) ∈ ℂ)
5452, 53, 28, 29addsub4d 8345 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐶) + (𝐵 + 𝐶)) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5550, 51, 543eqtr3d 2230 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5644, 46, 553brtr3d 4049 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5713, 22, 24, 56lediv1dd 9785 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2) ≤ ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2))
58 minabs 11276 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) = ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2))
593, 5, 58syl2anc 411 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) = ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2))
60 minabs 11276 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐴, 𝐶}, ℝ, < ) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2))
611, 5, 60syl2anc 411 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({𝐴, 𝐶}, ℝ, < ) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2))
62 minabs 11276 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐵, 𝐶}, ℝ, < ) = (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2))
632, 5, 62syl2anc 411 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({𝐵, 𝐶}, ℝ, < ) = (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2))
6461, 63oveq12d 5914 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2) + (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2)))
6552, 28subcld 8298 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) ∈ ℂ)
6653, 29subcld 8298 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) ∈ ℂ)
67 2cnd 9022 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈ ℂ)
68 2ap0 9042 . . . . 5 2 # 0
6968a1i 9 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 # 0)
7065, 66, 67, 69divdirapd 8816 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2) + (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2)))
7164, 70eqtr4d 2225 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2))
7257, 59, 713brtr4d 4050 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2160  {cpr 3608   class class class wbr 4018  cfv 5235  (class class class)co 5896  infcinf 7012  cr 7840  0cc0 7841   + caddc 7844   < clt 8022  cle 8023  cmin 8158  -cneg 8159   # cap 8568   / cdiv 8659  2c2 9000  +crp 9683  abscabs 11038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-rp 9684  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040
This theorem is referenced by:  xrbdtri  11316
  Copyright terms: Public domain W3C validator