ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdtri GIF version

Theorem bdtri 11408
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
bdtri (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))

Proof of Theorem bdtri
StepHypRef Expression
1 simp1l 1023 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
2 simp2l 1025 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
31, 2readdcld 8059 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ)
4 simp3 1001 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
54rpred 9774 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
63, 5readdcld 8059 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ)
71recnd 8058 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
82recnd 8058 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
97, 8addcld 8049 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℂ)
105recnd 8058 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
119, 10subcld 8340 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) − 𝐶) ∈ ℂ)
1211abscld 11349 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℝ)
136, 12resubcld 8410 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ)
141, 5readdcld 8059 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐶) ∈ ℝ)
157, 10subcld 8340 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐶) ∈ ℂ)
1615abscld 11349 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴𝐶)) ∈ ℝ)
1714, 16resubcld 8410 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) ∈ ℝ)
182, 5readdcld 8059 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 + 𝐶) ∈ ℝ)
198, 10subcld 8340 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵𝐶) ∈ ℂ)
2019abscld 11349 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐵𝐶)) ∈ ℝ)
2118, 20resubcld 8410 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) ∈ ℝ)
2217, 21readdcld 8059 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) ∈ ℝ)
23 2rp 9736 . . . 4 2 ∈ ℝ+
2423a1i 9 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈ ℝ+)
2512renegcld 8409 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → -(abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℝ)
2616, 20readdcld 8059 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
275, 26resubcld 8410 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) ∈ ℝ)
2816recnd 8058 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴𝐶)) ∈ ℂ)
2920recnd 8058 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐵𝐶)) ∈ ℂ)
3028, 29addcld 8049 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℂ)
3112recnd 8058 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℂ)
3230, 31, 30sub32d 8372 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) − (abs‘((𝐴 + 𝐵) − 𝐶))))
3330subidd 8328 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = 0)
3433oveq1d 5938 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) − (abs‘((𝐴 + 𝐵) − 𝐶))) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶))))
3532, 34eqtrd 2229 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶))))
36 df-neg 8203 . . . . . . 7 -(abs‘((𝐴 + 𝐵) − 𝐶)) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶)))
3735, 36eqtr4di 2247 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = -(abs‘((𝐴 + 𝐵) − 𝐶)))
3826, 12resubcld 8410 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ)
39 bdtrilem 11407 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))
4026, 12, 5lesubaddd 8572 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ 𝐶 ↔ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))))
4139, 40mpbird 167 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ 𝐶)
4238, 5, 26, 41lesub1dd 8591 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) ≤ (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
4337, 42eqbrtrrd 4058 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → -(abs‘((𝐴 + 𝐵) − 𝐶)) ≤ (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
4425, 27, 6, 43leadd2dd 8590 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + -(abs‘((𝐴 + 𝐵) − 𝐶))) ≤ (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))))
459, 10addcld 8049 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + 𝐶) ∈ ℂ)
4645, 31negsubd 8346 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + -(abs‘((𝐴 + 𝐵) − 𝐶))) = (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))))
479, 10, 10addassd 8052 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + 𝐶) = ((𝐴 + 𝐵) + (𝐶 + 𝐶)))
487, 8, 10, 10add4d 8198 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + (𝐶 + 𝐶)) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
4947, 48eqtrd 2229 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + 𝐶) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
5049oveq1d 5938 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) + 𝐶) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐶) + (𝐵 + 𝐶)) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
5145, 10, 30addsubassd 8360 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) + 𝐶) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))))
527, 10addcld 8049 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐶) ∈ ℂ)
538, 10addcld 8049 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 + 𝐶) ∈ ℂ)
5452, 53, 28, 29addsub4d 8387 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐶) + (𝐵 + 𝐶)) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5550, 51, 543eqtr3d 2237 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5644, 46, 553brtr3d 4065 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5713, 22, 24, 56lediv1dd 9833 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2) ≤ ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2))
58 minabs 11404 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) = ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2))
593, 5, 58syl2anc 411 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) = ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2))
60 minabs 11404 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐴, 𝐶}, ℝ, < ) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2))
611, 5, 60syl2anc 411 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({𝐴, 𝐶}, ℝ, < ) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2))
62 minabs 11404 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐵, 𝐶}, ℝ, < ) = (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2))
632, 5, 62syl2anc 411 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({𝐵, 𝐶}, ℝ, < ) = (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2))
6461, 63oveq12d 5941 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2) + (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2)))
6552, 28subcld 8340 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) ∈ ℂ)
6653, 29subcld 8340 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) ∈ ℂ)
67 2cnd 9066 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈ ℂ)
68 2ap0 9086 . . . . 5 2 # 0
6968a1i 9 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 # 0)
7065, 66, 67, 69divdirapd 8859 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2) + (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2)))
7164, 70eqtr4d 2232 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2))
7257, 59, 713brtr4d 4066 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  {cpr 3624   class class class wbr 4034  cfv 5259  (class class class)co 5923  infcinf 7051  cr 7881  0cc0 7882   + caddc 7885   < clt 8064  cle 8065  cmin 8200  -cneg 8201   # cap 8611   / cdiv 8702  2c2 9044  +crp 9731  abscabs 11165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-frec 6451  df-sup 7052  df-inf 7053  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330  df-uz 9605  df-rp 9732  df-seqfrec 10543  df-exp 10634  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167
This theorem is referenced by:  xrbdtri  11444
  Copyright terms: Public domain W3C validator