ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdtri GIF version

Theorem bdtri 11042
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
bdtri (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))

Proof of Theorem bdtri
StepHypRef Expression
1 simp1l 1006 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
2 simp2l 1008 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
31, 2readdcld 7818 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ)
4 simp3 984 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
54rpred 9512 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
63, 5readdcld 7818 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ)
71recnd 7817 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
82recnd 7817 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
97, 8addcld 7808 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℂ)
105recnd 7817 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
119, 10subcld 8096 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) − 𝐶) ∈ ℂ)
1211abscld 10984 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℝ)
136, 12resubcld 8166 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ)
141, 5readdcld 7818 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐶) ∈ ℝ)
157, 10subcld 8096 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐶) ∈ ℂ)
1615abscld 10984 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴𝐶)) ∈ ℝ)
1714, 16resubcld 8166 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) ∈ ℝ)
182, 5readdcld 7818 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 + 𝐶) ∈ ℝ)
198, 10subcld 8096 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵𝐶) ∈ ℂ)
2019abscld 10984 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐵𝐶)) ∈ ℝ)
2118, 20resubcld 8166 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) ∈ ℝ)
2217, 21readdcld 7818 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) ∈ ℝ)
23 2rp 9474 . . . 4 2 ∈ ℝ+
2423a1i 9 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈ ℝ+)
2512renegcld 8165 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → -(abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℝ)
2616, 20readdcld 7818 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
275, 26resubcld 8166 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) ∈ ℝ)
2816recnd 7817 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴𝐶)) ∈ ℂ)
2920recnd 7817 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐵𝐶)) ∈ ℂ)
3028, 29addcld 7808 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℂ)
3112recnd 7817 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℂ)
3230, 31, 30sub32d 8128 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) − (abs‘((𝐴 + 𝐵) − 𝐶))))
3330subidd 8084 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = 0)
3433oveq1d 5796 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) − (abs‘((𝐴 + 𝐵) − 𝐶))) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶))))
3532, 34eqtrd 2173 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶))))
36 df-neg 7959 . . . . . . 7 -(abs‘((𝐴 + 𝐵) − 𝐶)) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶)))
3735, 36eqtr4di 2191 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = -(abs‘((𝐴 + 𝐵) − 𝐶)))
3826, 12resubcld 8166 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ)
39 bdtrilem 11041 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))
4026, 12, 5lesubaddd 8327 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ 𝐶 ↔ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))))
4139, 40mpbird 166 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ 𝐶)
4238, 5, 26, 41lesub1dd 8346 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) ≤ (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
4337, 42eqbrtrrd 3959 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → -(abs‘((𝐴 + 𝐵) − 𝐶)) ≤ (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
4425, 27, 6, 43leadd2dd 8345 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + -(abs‘((𝐴 + 𝐵) − 𝐶))) ≤ (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))))
459, 10addcld 7808 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + 𝐶) ∈ ℂ)
4645, 31negsubd 8102 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + -(abs‘((𝐴 + 𝐵) − 𝐶))) = (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))))
479, 10, 10addassd 7811 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + 𝐶) = ((𝐴 + 𝐵) + (𝐶 + 𝐶)))
487, 8, 10, 10add4d 7954 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + (𝐶 + 𝐶)) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
4947, 48eqtrd 2173 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + 𝐶) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
5049oveq1d 5796 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) + 𝐶) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐶) + (𝐵 + 𝐶)) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
5145, 10, 30addsubassd 8116 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) + 𝐶) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))))
527, 10addcld 7808 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐶) ∈ ℂ)
538, 10addcld 7808 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 + 𝐶) ∈ ℂ)
5452, 53, 28, 29addsub4d 8143 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐶) + (𝐵 + 𝐶)) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5550, 51, 543eqtr3d 2181 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5644, 46, 553brtr3d 3966 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5713, 22, 24, 56lediv1dd 9571 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2) ≤ ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2))
58 minabs 11038 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) = ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2))
593, 5, 58syl2anc 409 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) = ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2))
60 minabs 11038 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐴, 𝐶}, ℝ, < ) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2))
611, 5, 60syl2anc 409 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({𝐴, 𝐶}, ℝ, < ) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2))
62 minabs 11038 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐵, 𝐶}, ℝ, < ) = (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2))
632, 5, 62syl2anc 409 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({𝐵, 𝐶}, ℝ, < ) = (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2))
6461, 63oveq12d 5799 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2) + (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2)))
6552, 28subcld 8096 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) ∈ ℂ)
6653, 29subcld 8096 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) ∈ ℂ)
67 2cnd 8816 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈ ℂ)
68 2ap0 8836 . . . . 5 2 # 0
6968a1i 9 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 # 0)
7065, 66, 67, 69divdirapd 8612 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2) + (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2)))
7164, 70eqtr4d 2176 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2))
7257, 59, 713brtr4d 3967 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  {cpr 3532   class class class wbr 3936  cfv 5130  (class class class)co 5781  infcinf 6877  cr 7642  0cc0 7643   + caddc 7646   < clt 7823  cle 7824  cmin 7956  -cneg 7957   # cap 8366   / cdiv 8455  2c2 8794  +crp 9469  abscabs 10800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-isom 5139  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-sup 6878  df-inf 6879  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-rp 9470  df-seqfrec 10249  df-exp 10323  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802
This theorem is referenced by:  xrbdtri  11076
  Copyright terms: Public domain W3C validator