ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdtri GIF version

Theorem bdtri 11759
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
bdtri (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))

Proof of Theorem bdtri
StepHypRef Expression
1 simp1l 1045 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
2 simp2l 1047 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
31, 2readdcld 8184 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ)
4 simp3 1023 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
54rpred 9900 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
63, 5readdcld 8184 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ)
71recnd 8183 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
82recnd 8183 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
97, 8addcld 8174 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℂ)
105recnd 8183 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
119, 10subcld 8465 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) − 𝐶) ∈ ℂ)
1211abscld 11700 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℝ)
136, 12resubcld 8535 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ)
141, 5readdcld 8184 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐶) ∈ ℝ)
157, 10subcld 8465 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐶) ∈ ℂ)
1615abscld 11700 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴𝐶)) ∈ ℝ)
1714, 16resubcld 8535 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) ∈ ℝ)
182, 5readdcld 8184 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 + 𝐶) ∈ ℝ)
198, 10subcld 8465 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵𝐶) ∈ ℂ)
2019abscld 11700 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐵𝐶)) ∈ ℝ)
2118, 20resubcld 8535 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) ∈ ℝ)
2217, 21readdcld 8184 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) ∈ ℝ)
23 2rp 9862 . . . 4 2 ∈ ℝ+
2423a1i 9 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈ ℝ+)
2512renegcld 8534 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → -(abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℝ)
2616, 20readdcld 8184 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
275, 26resubcld 8535 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) ∈ ℝ)
2816recnd 8183 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴𝐶)) ∈ ℂ)
2920recnd 8183 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐵𝐶)) ∈ ℂ)
3028, 29addcld 8174 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℂ)
3112recnd 8183 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℂ)
3230, 31, 30sub32d 8497 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) − (abs‘((𝐴 + 𝐵) − 𝐶))))
3330subidd 8453 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = 0)
3433oveq1d 6022 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) − (abs‘((𝐴 + 𝐵) − 𝐶))) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶))))
3532, 34eqtrd 2262 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶))))
36 df-neg 8328 . . . . . . 7 -(abs‘((𝐴 + 𝐵) − 𝐶)) = (0 − (abs‘((𝐴 + 𝐵) − 𝐶)))
3735, 36eqtr4di 2280 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = -(abs‘((𝐴 + 𝐵) − 𝐶)))
3826, 12resubcld 8535 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ)
39 bdtrilem 11758 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))
4026, 12, 5lesubaddd 8697 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ 𝐶 ↔ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))))
4139, 40mpbird 167 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ 𝐶)
4238, 5, 26, 41lesub1dd 8716 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) − (abs‘((𝐴 + 𝐵) − 𝐶))) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) ≤ (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
4337, 42eqbrtrrd 4107 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → -(abs‘((𝐴 + 𝐵) − 𝐶)) ≤ (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
4425, 27, 6, 43leadd2dd 8715 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + -(abs‘((𝐴 + 𝐵) − 𝐶))) ≤ (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))))
459, 10addcld 8174 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + 𝐶) ∈ ℂ)
4645, 31negsubd 8471 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + -(abs‘((𝐴 + 𝐵) − 𝐶))) = (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))))
479, 10, 10addassd 8177 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + 𝐶) = ((𝐴 + 𝐵) + (𝐶 + 𝐶)))
487, 8, 10, 10add4d 8323 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) + (𝐶 + 𝐶)) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
4947, 48eqtrd 2262 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + 𝐶) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
5049oveq1d 6022 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) + 𝐶) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐶) + (𝐵 + 𝐶)) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))))
5145, 10, 30addsubassd 8485 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) + 𝐶) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))))
527, 10addcld 8174 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐶) ∈ ℂ)
538, 10addcld 8174 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 + 𝐶) ∈ ℂ)
5452, 53, 28, 29addsub4d 8512 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐶) + (𝐵 + 𝐶)) − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5550, 51, 543eqtr3d 2270 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) + (𝐶 − ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5644, 46, 553brtr3d 4114 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) ≤ (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))))
5713, 22, 24, 56lediv1dd 9959 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2) ≤ ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2))
58 minabs 11755 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) = ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2))
593, 5, 58syl2anc 411 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) = ((((𝐴 + 𝐵) + 𝐶) − (abs‘((𝐴 + 𝐵) − 𝐶))) / 2))
60 minabs 11755 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐴, 𝐶}, ℝ, < ) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2))
611, 5, 60syl2anc 411 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({𝐴, 𝐶}, ℝ, < ) = (((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2))
62 minabs 11755 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐵, 𝐶}, ℝ, < ) = (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2))
632, 5, 62syl2anc 411 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({𝐵, 𝐶}, ℝ, < ) = (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2))
6461, 63oveq12d 6025 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2) + (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2)))
6552, 28subcld 8465 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) ∈ ℂ)
6653, 29subcld 8465 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) ∈ ℂ)
67 2cnd 9191 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈ ℂ)
68 2ap0 9211 . . . . 5 2 # 0
6968a1i 9 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 # 0)
7065, 66, 67, 69divdirapd 8984 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) / 2) + (((𝐵 + 𝐶) − (abs‘(𝐵𝐶))) / 2)))
7164, 70eqtr4d 2265 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )) = ((((𝐴 + 𝐶) − (abs‘(𝐴𝐶))) + ((𝐵 + 𝐶) − (abs‘(𝐵𝐶)))) / 2))
7257, 59, 713brtr4d 4115 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  {cpr 3667   class class class wbr 4083  cfv 5318  (class class class)co 6007  infcinf 7158  cr 8006  0cc0 8007   + caddc 8010   < clt 8189  cle 8190  cmin 8325  -cneg 8326   # cap 8736   / cdiv 8827  2c2 9169  +crp 9857  abscabs 11516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518
This theorem is referenced by:  xrbdtri  11795
  Copyright terms: Public domain W3C validator