ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadd GIF version

Theorem imadd 11042
Description: Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
imadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))

Proof of Theorem imadd
StepHypRef Expression
1 recl 11018 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21adantr 276 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
32recnd 8055 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
4 ax-icn 7974 . . . . . 6 i ∈ ℂ
5 imcl 11019 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
65adantr 276 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
76recnd 8055 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
8 mulcl 8006 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
94, 7, 8sylancr 414 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
10 recl 11018 . . . . . . 7 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1110adantl 277 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1211recnd 8055 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
13 imcl 11019 . . . . . . . 8 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1413adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1514recnd 8055 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
16 mulcl 8006 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
174, 15, 16sylancr 414 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
183, 9, 12, 17add4d 8195 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) + (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵)))))
19 replim 11024 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
20 replim 11024 . . . . 5 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
2119, 20oveqan12d 5941 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
224a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
2322, 7, 15adddid 8051 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℑ‘𝐴) + (ℑ‘𝐵))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵))))
2423oveq2d 5938 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (ℜ‘𝐵)) + (i · ((ℑ‘𝐴) + (ℑ‘𝐵)))) = (((ℜ‘𝐴) + (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵)))))
2518, 21, 243eqtr4d 2239 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (((ℜ‘𝐴) + (ℜ‘𝐵)) + (i · ((ℑ‘𝐴) + (ℑ‘𝐵)))))
2625fveq2d 5562 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = (ℑ‘(((ℜ‘𝐴) + (ℜ‘𝐵)) + (i · ((ℑ‘𝐴) + (ℑ‘𝐵))))))
27 readdcl 8005 . . . 4 (((ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐵) ∈ ℝ) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℝ)
281, 10, 27syl2an 289 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℝ)
29 readdcl 8005 . . . 4 (((ℑ‘𝐴) ∈ ℝ ∧ (ℑ‘𝐵) ∈ ℝ) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℝ)
305, 13, 29syl2an 289 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℝ)
31 crim 11023 . . 3 ((((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℝ ∧ ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℝ) → (ℑ‘(((ℜ‘𝐴) + (ℜ‘𝐵)) + (i · ((ℑ‘𝐴) + (ℑ‘𝐵))))) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
3228, 30, 31syl2anc 411 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(((ℜ‘𝐴) + (ℜ‘𝐵)) + (i · ((ℑ‘𝐴) + (ℑ‘𝐵))))) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
3326, 32eqtrd 2229 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  ici 7881   + caddc 7882   · cmul 7884  cre 11005  cim 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-2 9049  df-cj 11007  df-re 11008  df-im 11009
This theorem is referenced by:  imsub  11043  cjadd  11049  imaddi  11094  imaddd  11125  fsumim  11638  gzaddcl  12546
  Copyright terms: Public domain W3C validator