ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numsuc GIF version

Theorem numsuc 9335
Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numnncl.1 𝑇 ∈ ℕ0
numnncl.2 𝐴 ∈ ℕ0
numcl.2 𝐵 ∈ ℕ0
numsuc.4 (𝐵 + 1) = 𝐶
numsuc.5 𝑁 = ((𝑇 · 𝐴) + 𝐵)
Assertion
Ref Expression
numsuc (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶)

Proof of Theorem numsuc
StepHypRef Expression
1 numsuc.5 . . 3 𝑁 = ((𝑇 · 𝐴) + 𝐵)
21oveq1i 5852 . 2 (𝑁 + 1) = (((𝑇 · 𝐴) + 𝐵) + 1)
3 numnncl.1 . . . . 5 𝑇 ∈ ℕ0
4 numnncl.2 . . . . 5 𝐴 ∈ ℕ0
53, 4nn0mulcli 9152 . . . 4 (𝑇 · 𝐴) ∈ ℕ0
65nn0cni 9126 . . 3 (𝑇 · 𝐴) ∈ ℂ
7 numcl.2 . . . 4 𝐵 ∈ ℕ0
87nn0cni 9126 . . 3 𝐵 ∈ ℂ
9 ax-1cn 7846 . . 3 1 ∈ ℂ
106, 8, 9addassi 7907 . 2 (((𝑇 · 𝐴) + 𝐵) + 1) = ((𝑇 · 𝐴) + (𝐵 + 1))
11 numsuc.4 . . 3 (𝐵 + 1) = 𝐶
1211oveq2i 5853 . 2 ((𝑇 · 𝐴) + (𝐵 + 1)) = ((𝑇 · 𝐴) + 𝐶)
132, 10, 123eqtri 2190 1 (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  (class class class)co 5842  1c1 7754   + caddc 7756   · cmul 7758  0cn0 9114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-inn 8858  df-n0 9115
This theorem is referenced by:  decsuc  9352  numsucc  9361  decbin3  9463
  Copyright terms: Public domain W3C validator