Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > numsuc | GIF version |
Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numnncl.1 | ⊢ 𝑇 ∈ ℕ0 |
numnncl.2 | ⊢ 𝐴 ∈ ℕ0 |
numcl.2 | ⊢ 𝐵 ∈ ℕ0 |
numsuc.4 | ⊢ (𝐵 + 1) = 𝐶 |
numsuc.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) |
Ref | Expression |
---|---|
numsuc | ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numsuc.5 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | |
2 | 1 | oveq1i 5828 | . 2 ⊢ (𝑁 + 1) = (((𝑇 · 𝐴) + 𝐵) + 1) |
3 | numnncl.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
4 | numnncl.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
5 | 3, 4 | nn0mulcli 9111 | . . . 4 ⊢ (𝑇 · 𝐴) ∈ ℕ0 |
6 | 5 | nn0cni 9085 | . . 3 ⊢ (𝑇 · 𝐴) ∈ ℂ |
7 | numcl.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
8 | 7 | nn0cni 9085 | . . 3 ⊢ 𝐵 ∈ ℂ |
9 | ax-1cn 7808 | . . 3 ⊢ 1 ∈ ℂ | |
10 | 6, 8, 9 | addassi 7869 | . 2 ⊢ (((𝑇 · 𝐴) + 𝐵) + 1) = ((𝑇 · 𝐴) + (𝐵 + 1)) |
11 | numsuc.4 | . . 3 ⊢ (𝐵 + 1) = 𝐶 | |
12 | 11 | oveq2i 5829 | . 2 ⊢ ((𝑇 · 𝐴) + (𝐵 + 1)) = ((𝑇 · 𝐴) + 𝐶) |
13 | 2, 10, 12 | 3eqtri 2182 | 1 ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 (class class class)co 5818 1c1 7716 + caddc 7718 · cmul 7720 ℕ0cn0 9073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-sub 8031 df-inn 8817 df-n0 9074 |
This theorem is referenced by: decsuc 9308 numsucc 9317 decbin3 9419 |
Copyright terms: Public domain | W3C validator |