![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > numsuc | GIF version |
Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numnncl.1 | ⊢ 𝑇 ∈ ℕ0 |
numnncl.2 | ⊢ 𝐴 ∈ ℕ0 |
numcl.2 | ⊢ 𝐵 ∈ ℕ0 |
numsuc.4 | ⊢ (𝐵 + 1) = 𝐶 |
numsuc.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) |
Ref | Expression |
---|---|
numsuc | ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numsuc.5 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | |
2 | 1 | oveq1i 5920 | . 2 ⊢ (𝑁 + 1) = (((𝑇 · 𝐴) + 𝐵) + 1) |
3 | numnncl.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
4 | numnncl.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
5 | 3, 4 | nn0mulcli 9268 | . . . 4 ⊢ (𝑇 · 𝐴) ∈ ℕ0 |
6 | 5 | nn0cni 9242 | . . 3 ⊢ (𝑇 · 𝐴) ∈ ℂ |
7 | numcl.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
8 | 7 | nn0cni 9242 | . . 3 ⊢ 𝐵 ∈ ℂ |
9 | ax-1cn 7955 | . . 3 ⊢ 1 ∈ ℂ | |
10 | 6, 8, 9 | addassi 8017 | . 2 ⊢ (((𝑇 · 𝐴) + 𝐵) + 1) = ((𝑇 · 𝐴) + (𝐵 + 1)) |
11 | numsuc.4 | . . 3 ⊢ (𝐵 + 1) = 𝐶 | |
12 | 11 | oveq2i 5921 | . 2 ⊢ ((𝑇 · 𝐴) + (𝐵 + 1)) = ((𝑇 · 𝐴) + 𝐶) |
13 | 2, 10, 12 | 3eqtri 2218 | 1 ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5910 1c1 7863 + caddc 7865 · cmul 7867 ℕ0cn0 9230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-addcom 7962 ax-mulcom 7963 ax-addass 7964 ax-mulass 7965 ax-distr 7966 ax-i2m1 7967 ax-1rid 7969 ax-0id 7970 ax-rnegex 7971 ax-cnre 7973 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-iota 5207 df-fun 5248 df-fv 5254 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-sub 8182 df-inn 8973 df-n0 9231 |
This theorem is referenced by: decsuc 9468 numsucc 9477 decbin3 9579 |
Copyright terms: Public domain | W3C validator |