| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numsuc | GIF version | ||
| Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numnncl.1 | ⊢ 𝑇 ∈ ℕ0 |
| numnncl.2 | ⊢ 𝐴 ∈ ℕ0 |
| numcl.2 | ⊢ 𝐵 ∈ ℕ0 |
| numsuc.4 | ⊢ (𝐵 + 1) = 𝐶 |
| numsuc.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) |
| Ref | Expression |
|---|---|
| numsuc | ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numsuc.5 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | |
| 2 | 1 | oveq1i 5954 | . 2 ⊢ (𝑁 + 1) = (((𝑇 · 𝐴) + 𝐵) + 1) |
| 3 | numnncl.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
| 4 | numnncl.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | 3, 4 | nn0mulcli 9333 | . . . 4 ⊢ (𝑇 · 𝐴) ∈ ℕ0 |
| 6 | 5 | nn0cni 9307 | . . 3 ⊢ (𝑇 · 𝐴) ∈ ℂ |
| 7 | numcl.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
| 8 | 7 | nn0cni 9307 | . . 3 ⊢ 𝐵 ∈ ℂ |
| 9 | ax-1cn 8018 | . . 3 ⊢ 1 ∈ ℂ | |
| 10 | 6, 8, 9 | addassi 8080 | . 2 ⊢ (((𝑇 · 𝐴) + 𝐵) + 1) = ((𝑇 · 𝐴) + (𝐵 + 1)) |
| 11 | numsuc.4 | . . 3 ⊢ (𝐵 + 1) = 𝐶 | |
| 12 | 11 | oveq2i 5955 | . 2 ⊢ ((𝑇 · 𝐴) + (𝐵 + 1)) = ((𝑇 · 𝐴) + 𝐶) |
| 13 | 2, 10, 12 | 3eqtri 2230 | 1 ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 (class class class)co 5944 1c1 7926 + caddc 7928 · cmul 7930 ℕ0cn0 9295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-inn 9037 df-n0 9296 |
| This theorem is referenced by: decsuc 9534 numsucc 9543 decbin3 9645 |
| Copyright terms: Public domain | W3C validator |